Tetrahedron Letters 54 (2013) 2183-2186

Contents lists available at SciVerse ScienceDirect

Tetrahedron Letters

journal homepage: www.elsevier.com/locate/tetlet

A BH₃ masked *H*-phosphonate for coupling in oligonucleotide synthesis

Jinyu Huang, Wei Lu, Zhen Xi*

The State Key Laboratory of Elemento-Organic Chemistry and Department of Chemical Biology, Nankai University, Tianjin 300071, China

ARTICLE INFO

Article history: Received 17 November 2012 Revised 30 January 2013 Accepted 19 February 2013 Available online 26 February 2013

Keywords: Protecting group H-Phosphonate Boranophosphate Block coupling Oligoribonucleotide synthesis

ABSTRACT

A method of masking 3'-*H*-phosphonate group for the solution-phase synthesis of ribonucleotide by *H*-phosphonate approach was described. The phosphonic acid group was masked by bis-(2-cyanoethyl) boranophosphate during the reactions. After a successive demasking treatment by triethylamine, trityl cation, and triethylamine, the triethylammonium 3'-*H*-phosphonate nucleotide can be obtained efficiently ready for the coupling cycle in synthesis of oligonucleotide.

© 2013 Published by Elsevier Ltd.

Solution-phase synthesis of oligonucleotide, compared to solidphase synthesis, has the advantages of easy characterization of reaction intermediates and easy scale-up, which should be useful in the synthesis of large scale of specific sequence oligonucleotide for therapeutical application such as siRNA. In our previous work,¹ we reported the synthesis of siRNA targeting on human superoxide dismutase gene in solution by the phosphotriester approach,² which has successfully yielded siRNA showing same efficiency of the gene silencing effect as its solid phase phosphotamidite approach synthesized counterpart.^{3,4} The phosphotriester approach generally gives quite efficient coupling in less than 14 mer oligoribonucleotides, while still needs to be optimized for longer than 20 mer synthesis.

H-Phosphonate approach,^{5–18} which has high coupling efficiency, is regarded as an alternative approach for oligonucleotide synthesis in solution. As same as phosphotriester approach, the *H*-phosphonate approach can adopt 'block' condensation reactions in solution-phase synthesis.¹⁰ During synthesis of those building block intermediates, a suitable protecting group for 3' end is crucial. Levulinyl (Lev) ester group was used as 3'-OH protecting group in the synthesis of DNA by *H*-phosphonate approach in solution.^{10,12} However, when using the same protecting group for the synthesis of RNA, demasking Lev group from 3'-OH would induce $2' \rightarrow 3'$ migration of 2'-protecting group such as TBDMS.¹⁹ It would be advantageous if we can develop an efficient masking–demasking protocol for 3'-*H*-phosphonate, in which 3'-*H*-phosphonate was masked during the coupling reaction, and demasked to give 3'-*H*-phosphonate monoester for the next nucleotide coupling.

BH₃ group was frequently used as the protecting group for phosphine derivatives,²⁰ and boranophosphate nucleotide was synthesized successfully.^{21–23} Wada group has done some excellent work using BH₃ to protect phosphonic acid.^{24,25} They have synthesized a boranophosphate-linked disaccharide, and converted it into *H*-phosphonate diester disaccharide. Inspired by their results, herein we have tested whether boranophosphotriester (compound **3** in Scheme 1) could be demasked to give *H*-phosphonate diester (compound 4 in Scheme 1), then further be demasked to give *H*-phosphonate monoester (compound **1** in Scheme 1) for coupling in oligonucletide synthesis. Several aromatic and alkyl groups can be used as a leaving group in the protection of phosphate.²⁶ Cyanoethyl group (CE), a frequently-used protecting group in oligonucleotide synthesis, has been chosen here as the protecting group for nucleotide 3'-phosphate. After BH₃ treatment, thus bis-(2-cyanoethyl) boranophosphate nucleotide (compound 2 in Scheme 1) was synthesized. Also, it is known that BH₃ group can be demasked by trityl cation in acidic solution,^{24,25,27} in order to avoid the simultaneous deprotection on 5'-DMTr protecting group, the trityl group, which is much stable in acid than DMTr group, was used as we have found that when the reaction was carried out in 0.2% dichloroacetic acid and 2.5 equiv of TMTrOH in CH₂Cl₂ in 10 min, the coordinated BH₃ group could be demasked by TMTrOH rapidly without observed deprotection on 5'-trityl group. Fortunately, the 2-cyanoethyl group and the BH₃ group were successfully demasked successively to give 3'-H-phosphonate monoester nucleotide.

The nucleoside **5** in THF and 3-hydroxypropionitrile was added successively into a THF solution of PCl₃ and 2,6-dimethylpyridine at -78 °C under argon atmosphere. Followed by adding 1 M BH₃·THF in THF solution at -20 °C. The resulting solution was

^{*} Corresponding author. Tel./fax: +86 22 23504782. *E-mail address*: zhenxi@nankai.edu.cn (Z. Xi).

^{0040-4039/\$ -} see front matter \odot 2013 Published by Elsevier Ltd. http://dx.doi.org/10.1016/j.tetlet.2013.02.054

Scheme 1. BH₃ masked *H*-phosphonate for coupling cycle in oligonucleotide synthesis.

stirred at 0 °C for additional 30 min to give fully protected intermediate **7** in 86% yield (Scheme 2).

All other building blocks for *H*-phosphonate coupling reaction such as compounds **8** and **11** were obtained from the fully protected mononucleotide **7** by different demasking reaction. 5'-Trityl group was cleaved by 3% TFA in the presence of 50 mM BH₃.Py and 50% Et₃SiH as a trityl cation scavenger to avoid the demasking on BH₃ group.^{24,27} 5'-OH nucleotide **8** was thus obtained in 85% yield.

The triethylammonium *H*-phosphonate monoester **11** was obtained by three sequential reactions: firstly, one of the two 2-cyanoethyl groups was demasked by the treatment with Et_3N/CH_3CN to give compound **9** in 91% yield; secondly, the coordinated BH₃ group in compound **9** was demasked to give *H*-phosphonate diester **10** in 78% yield by the treatment of 0.2% dichloroacetic acid and 2.5 equiv of TMTrOH in CH_2Cl_2 in 10 min; finally, the remaining 2-cyanoethyl group in compound **10** was

Scheme 2. Reagents and conditions: (i) PCl₃, 2,6-dimethylpyridine, 3-hydroxypropionitrile, THF, -78 °C; (ii) BH₃·THF/THF, -20 to 0 °C, 30 min; (iii) 3% TFA, BH₃·Py (50 mM), CH₂Cl₂/Et₃SiH (v:v = 1:1), 0 °C, 15 min; (iv) Et₃N/CH₃CN (v:v = 3:1), rt, 10 min; (v) 0.2% DCA, TMTrOH (12.5 mM), CH₂Cl₂, 0 °C, 10 min; (vi) Et₃N/CH₃CN (v:v = 4:1), rt, 5 min.

Figure 1. ³¹P NMR of compound 7, 9–11.

Scheme 3. Reagents and conditions: (i) pivaloyl chloride, BH₃·Py (0.1 M), C₅H₅N, 0 °C, 20 min. (ii) *N*-(phenylsulfanyl)-succinimide, C₅H₅N, 0 °C, 20 min; (iii) 3% TFA, BH₃·Py (50 mM), CH₂Cl₂/Et₃SiH (v:v = 1:1), 0 °C, 15 min; (iv) Et₃N/CH₃CN (v:v = 3:1), rt, 10 min; (v) 0.2% DCA, TMTrOH (12.5 mM), CH₂Cl₂, 0 °C, 10 min; (vi) Et₃NH/CH₃CN.

demasked by Et_3N/CH_3CN to give compound **11** in 51% yield. The ³¹P NMR (Fig. 1) clearly showed the transformation reaction from compound **7** to **11**.

By coupling triethylammonium 3'-H-phosphonate monoester **11** and 5'-OH nucleotide **8**, the dinucleotide **12** was synthesized. The coupling reaction was activated by pivaloyl chloride in the presence of 0.1 M BH₃·Py at 0 °C, then the thus formed H-phosponate dinucleotide was reacted in situ with N-(phenylsulfanyl)-succinimide to give phosphorothioate triester **12** in 84% yield (Scheme 3). The presence of 0.1 M BH₃·Py in the coupling reaction can greatly reduce the partial demasking of P-BH₃.

The fully protected dinucleotide **12** was demasked to give 5'-OH dinucleotide **13** in 84% yield and triethylammonium *H*-phosphonate dinucleotide **14** in 34% yield, respectively, as described above for compound **7**. Thus obtained dinucleotide **13** and **14** can go on the coupling-demasking cycle for the longer oligonucleotide synthesis (Scheme 3).

In conclusion, a BH₃ masked *H*-phosphonate approach for coupling cycle in oligonucleotide solution synthesis was established herein successfully. This approach can not only take the advantage of high coupling efficiency by *H*-phosphonate in solution, but also avoid $2' \rightarrow 3'$ migration by 2'-protecting group. This masking-demasking protocol for 3'-*H*-phosphonate, in which 3'-*H*-phosphonate was masked by BH₃ and CE during the coupling reaction, and demasked to give 3'-*H*-phosphonate monoester for next coupling, may find new applications in the oligo-phosphate synthesis. The further optimization of this BH₃ masked *H*-phosphonate approach for oligomer synthesis is under active investigation in our lab and will be reported in due course.

Acknowledgments

This work was financially supported by Ministry of Science and Technology of China (2010CB126102, 2009ZX09503-022, 2011BAE06B05-3), National Natural Science Foundation of China (20932005, 20872067).

Supplementary data

Supplementary data (experimental procedures, characterization data and ¹H, ¹³C NMR, ³¹P NMR spectra and mass data) associated with this article can be found, in the online version, at http://dx.doi.org/10.1016/j.tetlet.2013.02.054.

References and notes

- 1. Huang, J.; Xi, Z. Tetrahedron Lett. 2012, 53, 3654-3657.
- 2. Chattopadhyaya, J. B.; Reese, C. B. Nucleic Acids Res. 1980, 8, 2039–2053.
- Alvarado-Urbina, G.; Sathe, G.; Liu, W.; Gillen, M.; Duck, P.; Bender, R.; Ogilvie, K. Science 1981, 214, 270–274.
- 4. Matteucci, M. D.; Caruthers, M. H. J. Am. Chem. Soc. 1981, 103, 3185-3191.
- 5. Hall, R. H.; Todd, A.; Webb, R. F. J. Chem. Soc. 1957, 3291-3296.
- Stawinski, J.; Strömberg, R.; Thelin, M.; Westman, E. Nucleic Acids Res. 1988, 16, 9285–9298.
- Froehler, B. C.; Ng, P. G.; Matteucci, M. D. Nucleic Acids Res. 1986, 14, 5399– 5407.
- Sakatsume, O.; Yamane, H.; Takaku, H.; Yamamoto, N. Nucleic Acids Res. 1990, 18, 3327–3331.
- Jankowska, J.; Sobkowski, M.; Stawiński, J.; Kraszewski, A. Tetrahedron Lett. 1994, 35, 3355–3358.
- 10. Wada, T.; Sato, Y.; Honda, F.; Kawahara, S.-i.; Sekine, M. J. Am. Chem. Soc. **1997**, 119, 12710–12721.
- 11. Reese, C. B.; Song, Q. Nucleic Acids Res. 1999, 27, 963–971.
- 12. Reese, C. B.; Yan, H. J. Chem. Soc., Perkin Trans. 1 2002, 2619-2633.
- 13. Meyer, A.; Morvan, F.; Vasseur, J.-J. Tetrahedron Lett. 2004, 45, 3745-3748.
- 14. Reese, C. B. Org. Biomol. Chem. 2005, 3, 3851-3868.
- Kamaike, K.; Hirose, K.; Kayama, Y.; Kawashima, E. Tetrahedron 2006, 62, 11814–11820.
- Adamo, I.; Dueymes, C.; Schönberger, A.; Navarro, A.-E.; Meyer, A.; Lange, M.; Imbach, J.-L; Link, F.; Morvan, F.; Vasseur, J.-J. *Eur. J. Org. Chem.* **2006**, 2006, 436–448.
- 17. Powles, N.; Atherton, J.; Page, M. I. Org. Biomol. Chem. 2012, 10, 5940-5947.
- Singh, A.; Tolev, M.; Schilling, C. I.; Bräse, S.; Griesser, H.; Richert, C. J. Org. Chem. 2012, 77, 2718–2728.
- Hassler, M.; Wu, Y. Q.; Mallikarjuna Reddy, N.; Chan, T. H.; Damha, M. J. Tetrahedron Lett. 2011, 52, 2575–2578.
- 20. Carboni, B.; Monnier, L. Tetrahedron 1999, 55, 1197–1248.
- 21. Sood, A.; Shaw, B. R.; Spielvogel, B. F. *J. Am. Chem. Soc.* **1990**, *112*, 9000–9001. 22. McCuen, H. B.; Noé, M. S.; Sierzchala, A. B.; Higson, A. P.; Caruthers, M. H. *J. Am.*
- Chem. Soc. 2006, 128, 8138–8139. 23. Li, P.; Sergueeva, Z. A.; Dobrikov, M.; Shaw, B. R. Chem. Rev. 2007, 107, 4746–
- 4796. 24. Shimizu, M.; Tamura, K.; Wada, T.; Saigo, K. *Tetrahedron Lett.* **2004**, 45, 371– 374
- 25. Sato, K.; Oka, N.; Fujita, S.; Matsumura, F.; Wada, T. J. Org. Chem. **2010**, 75, 2147–2156.
- 26. Ohtsuka, E.; Ikehara, M.; Söll, D. Nucleic Acids Res. 1982, 10, 6553-6570.
- Sergueeva, Z. A.; Sergueev, D. S.; Shaw, B. R. Nucleosides Nucleotides Nucleic Acids 2001, 20, 941–945.