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We describe here orally active and brain-penetrant cathepsin S selective inhibitors, which are virtually
devoid of hERG K* channel affinity, yet exhibit nanomolar potency against cathepsin S and over 100-fold
selectivity to cathepsin L. The new non-peptidic inhibitors are based on a 2-cyanopyrimidine scaffold
bearing a spiro[3.5]non-6-yl-methyl amine at the 4-position. The brain-penetrating cathepsin S inhibitors
demonstrate potential clinical utility for the treatment of multiple sclerosis and neuropathic pain.

© 2008 Elsevier Ltd. All rights reserved.

Cathepsin S (Cat S) is a cysteine protease predominantly ex-
pressed in dendritic cells, B cells, macrophages, and brain microg-
lia. In these antigen presenting cells Cat S plays an essential role in
the proteolytic events that lead to antigen presentation at the cells
surface for recognition by T cells.! In addition, Cat S can be secreted
by activated microglia and might play a role in regulating extra cel-
lular matrix interaction.? We have recently demonstrated that
inhibition of spinal microglial Cat S reversed neuropathic pain. It
was also reported that in Creutzfeldt-Jakob disease (C]JD) infected
mice Cat S expression has been increased, which could result from
microglia cell activation.? Cat S might be involved in multiple scle-
rosis (MS), myasthenia gravis (MG), Alzheimer’s disease (AD), and
Down disease.” These findings suggest that a Cat S inhibitor which
penetrates blood-brain barrier (BBB) could be beneficial for vari-
ous brain diseases. Herein, we describe the discovery of non-pep-
tidic Cat S inhibitors having a balanced blood-brain penetration
after overcoming a human ether-a-go-go-related gene (hERG) K*
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channel blocking issue which has often been observed in central
nervous system (CNS) drugs.®

We have recently reported a novel class of Cat S inhibitor 1, the
4,5,6-trisubstituted 2-cyanopyrimidine derivatives (Fig. 1).” How-
ever, the selectivity against the off-target enzyme, Cat L was insuf-
ficient to reach the clinical phase. Cat L deficient mice develop
periodic hair loss and epidermal hyperplasia, indicating that Cat
L is essential for epidermal homeostasis and regular hair follicle
morphogenesis and cycling.® Our next focus was thus on improv-
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Figure 1. The 4,5,6-trisubstituted pyrimidine scaffold for Cat S inhibitors.
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Figure 2. Compound 1 docked with human Cat S.

ing the selectivity of Cat S inhibitors against Cat L by modifying the
P2 moiety of 1, which interacts with the S2 subsite of each cathep-
sin, a key pocket for controlling the selectivity of cathepsin
inhibitors.”

The X-ray crystal structures of human Cat S (PDB code 1MS6)
and Cat L (PDB code 3BC3) suggested that the S2 subsite of the
Cat S enzyme accepts a slightly larger group than that for Cat
L21° The bottom of the S2 subsite in the Cat S enzyme has
Gly137 and Gly165, while the corresponding region in Cat L com-
prises of Ala135 and Gly164. Our computer-assisted modeling
studies concluded that the S2 pocket of Cat S would accommodate
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Scheme 1. Reagents and conditions: (a) TsCl, NMe3-HCl, NEt;, CH,Cl,, 0°C, 1h,
quant.; (b) CH,(CO,Et),, NaH, THF, rt-60 °C, 3 h; (c) LiCl, H,0, DMSO, 185 °C, 10 h,
48-59% (3 steps); (d) LiAlH4, THF, 0 °C, 0.5 h, 82-84%; (e) NaN;, DMF, rt, 0.5 h; (f)
PPhs, THF-H,O0, rt, 23 h, 73-75% (2 steps).

a slightly bulkier P2 group than the spiro[2.5]oct-6-yl-methyl
amine group of compound 1 (Fig. 2).

The spiro amine syntheses are shown in Scheme 1. Treatment of
2-[1-(2-hydroxy-ethyl)-cycloalkyl]-ethanol 2a-c!! with tosylchlo-
ride, triethylamine, and a catalytic amount of trimethylamine
hydrochloride'? in CH,Cl, afforded ditosylate 3a—c. Cyclization of
3a-c with diethyl malonate under basic conditions in THF provided
spiro diesters 4a-c. Decarboxylation reaction of 4a-c with lithium
chloride and water in DMSO at 185 °C, followed by reduction of the
resulting esters by LiAlH,4, gave spiro alcohols 5a-c which were
converted to amines 6a-c by treatment of the tosylates with so-
dium azide in DMF following by azide reduction with PPhs in
THF-H,0.

We used a multi-parallel synthesis approach for the optimiza-
tion of the 4- and 6-substituents on the 2-cyanopyrimidine by
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Crown-6, CH,Cl,-H,0, rt, 3 h, 41-66% (2 steps); (c) R'-NH,, NEts, THF, 0 °C-rt, 90-99%.; (d) 4 mol/L HCI-AcOEt, rt, 0.5 h, quant. or TFA, CH,Cl, (for 10c, 10e), rt, 10 min, 30-
34%; (e) HCHO or acetone, NaBH3(CN), AcOH, THF, 0 °C-rt, 1.5 h, 38-58%; (f) HO(CH,),OTHP, or 2,2,6,6-tetramethylpiperidine-4-ol, NaH, THF, 0-60 °C, 6 h, 82-99%; (g) PPTS,

EtOH, 70 °C, 6 h, 69-78%; (h) Br(CH,),0H, K,CO3, DMF, 0 °C-rt, 12 h, 49%, or AcCl, NEt;, CH,Cl,, 0

°C-rt, 12 h, 71%.
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using compounds 9 and 12 in Scheme 2 as key intermediates. Con-
densation of 4,6-dichloro-2-methylsulfanyl-pyrimidine-5-carbox-
ylic acid methylamide 7’ with N-Boc-piperazine-4-methanol or
ethanol under the basic conditions in THF afforded 8a, b. Conver-
sion of the methyl sulfides to nitriles 9 was performed by oxidation
with mCPBA followed by treatment with potassium cyanide.
Treatment of the key intermediate 9 with amines 6a-c, the
commercially available cyclopentylethylamine, or C-(1,4-dioxa-
spiro[4.5]dec-8-yl)-methylamine'®, followed by deprotection of
the Boc group and reductive amination with HCHO and NaBH3(CN),
provided the desired compounds 10a-d.

The synthesis for the optimization of the 6-substituent on the 2-
cyanopyrimidine is also described in Scheme 2. Condensation of 7
and C-spiro[3.5]non-7-yl-methylamine 6b gave compound 11
which was converted to a 6-chloro-2-cyanopyrimidine intermediate
12. Addition of 2,2,6,6-tetramethylpiperidine-4-ol or 2-(tetrahydro-
pyran-2-yloxy)-ethanol with sodium hydride in THF, followed by
deprotection under acidic conditions provided the desired com-
pounds 13a, b. Condensation of 12 with N-Boc-piperidine 4-metha-
nol and subsequent treatment with 4 mol/L HCl solution in ethyl
acetate or trifluoroacetic acid afforded the secondary amine 15.
N-Substitution of the piperazine in 15 by acylation, reductive
amination, or by using alkyl halides provided tertiary amines 16a-c.

The results of the SAR study on the optimization of the P2 moi-
ety are described in Table 1. Expansion of the spiro ring at the end
of P2 by replacement of the spirocyclopropyl with cyclobutyl group
improved selectivity against Cat L (Table 1; 1 vs 10a). However,
further expansion of the spiro ring decreased both potency and
selectivity toward Cat S (10b vs 10d). Introduction of a polar func-
tional group on the P2 part was not tolerated because of the hydro-

10c).’* In summary of P2 moiety, the spiro[3.5]non-6-yl-methyl
amine 6a was an optimum size for P2 based on the balance of po-
tency and selectivity to Cat S.

In the past decade, a number of drugs failed to reach or were
withdrawn from the market due to cardiosafety issues. It is now
widely known that inhibition of hERG K* channel is one of the ma-
jor causes of the observed cardiac side effects, which are drug-in-
duced QT prolongation and/or arrhythmia called Torsades de
Pointes. Our designed Cat S inhibitors 10a, b showed unacceptable
affinity to the hERG K* channel as indicated by the binding assay
using [>H]dofetilide. We thus needed to decrease the hERG K*
channel binding affinity of compounds by modification of the 6-
substituent on the 2-cyanopyrimidine. Introduction of many func-
tional groups at the pyrimidine 6-position could be well tolerated
by the Cat S active site, as the 6-substituent orients itself toward
the solvent space in the modeling (Fig. 2). Indeed, all compounds
in Table 2 having a variety of substituents at the pyrimidine 6-po-
sition, showed excellent inhibitory activity and selectivity toward
Cat S. A SAR study of the 2-cyanopyrimidines on the hERG K* chan-
nel binding affinity is shown in Table 2.

A typical 3D pharmacophore model for prediction of hERG K*
channel binding activity has been published.®'® The model sug-
gests that the classic hERG K* channel blocker motif contains a ba-
sic nitrogen center flanked by an aromatic or hydrophobic group.
We thus attempted to modulate the basicity of the piperidine ring
in the 6-substituent on the 2-cyanopyrimidine core. Decreasing the
basicity of the nitrogen atom by replacing the tertiary amine with a
secondary amine decreased the hERG binding activity (Table 2;
10b vs 15). An increase in basicity by replacement of N-methyl
piperidine by N-isopropyl piperidine showed the anticipated in-

phobic natures of the S2 subsites in both Cat S and Cat L (10b vs crease in affinity to the hERG K" channel (16a, hERG
Table 1 Table 2
Optimization of the P2 moiety Optimization of the 6 position on the pyrimidine ring'”
Cl N— ~NH .R
\NH o/( Hz)n o
SN
07NN o /)\
HN™ N
HN N/)\\\N Y
R
Compound n R ICs0 (nM)?
Cat S CatL hERGP Compound R 1C5o (NM)*
, Cat$ CatL hERGP
1 2 :.c|-|2—<:><] 2 120 NT*
10b E'CHz_C = 3 360 710
10a 2 E.CH2—<:><> 4 440 420
16a E-CHZ—CN—< 3 330 540
10b 1 E.CH2—<:><> 3 360 710
16b :-CH—CN 3 300 890
: 0 : v o
10¢ 1 LCH;—( :><> >1000 >1000 NT
0 15 E.CHZ_CNH 5 460 2340
10d 1 -CH 2_<:>O 12 276 1455
o 13a : NH 5 1390 5040
10e 1 CH; ] 31 426 5770
0 16¢ E-CHZ—CN—‘(o 10 2500 >30,000
10d 1 '(CHz)z—O 26 400 360 '
13b ~CH,CH,0H 6 1200 >30,000

¢ Inhibition profiles were determined by a fluorometric assay with recombinant
human Cat L and Cat S, employing Z-Phe-Arg-AMC (Cat L) and L-Leu-Leu-Arg-AMC
(Cat S) as synthetic substrates.'> Data represent means of two experiments per-
formed in duplicate. Individual data points in each experiment were within a
twofold range with each other.

® Inhibition profiles were determined by a radioligand binding assay with
[®H]dofetilide binding to a crude membrane preparation of HEK293 cell membranes
stably transfected with hERG channels.'®

€ NT, not tested.

¢ Inhibition profiles were determined by a fluorometric assay with recombinant
human Cat K, L, and S, employing Z-Phe-Arg-AMC (Cat K and L) and L-Leu-Leu-Arg-
AMC (Cat S) as synthetic substrates.!® Data represent means of two experiments
performed in duplicate. Individual data points in each experiment were within a
twofold range with each other.

b Inhibition profiles were determined by a radioligand assay with [*H]dofetilide
binding to a crude membrane preparation of HEK293 cell membranes stably
transfected with hERG channels.'®
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Table 3
Plasma and brain concentration profiles for several compounds in Sprague-Dawley
rats (po 10 mg/kg), where values are means of n =3

Compound Plasma concentration (nM) Brain concentration (nM)
1h 3h 1h 3h

10b 346 308 124 718

16a 191 381 67 455

15 28 61 <13 <13

13a — 287 - 164

16¢ 169 80 27 <13

13b 283 170 692 849

Table 4

Pharmacokinetic parameters of 10b, 16a, and 13b in male Sprague-Dawley rats (iv
1 mg/kg; po 10 mg/kg), where values are means of n=3

Compound  oCriax Cl, (L/b/ it1)2 2l po AUC Vass (L]
(nM) kg) (h) (%) (nMh) kg)
10b 461 1.1 6.7 40 8237 9.8
16a 298 0.6 11.8 24 8083 9.3
13b 907 1.5 1.5 14 2503 1.2
1.8
1.6
—u—Control
_ 147 —a—10b;10 mgikg
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= ]
3 1.0+ /
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Figure 3. Effect?' of compound 10b in acute experimental autoimmune enceph-
alomyelitis in SJL/] mice. Data presented are means + SEM. Kruskal-Wallis non-
parametric ANOVA, followed by Dunn’s multiple comparison test p <0.05,
“p<0.01 Disease incidence was analyzed using Fisher's exact test (2 x 2 contin-
gency table, 2-sided p value). n=15. MBP, myelin basic protein.

ICs0 = 540 nM). Interestingly, a less basic substituent afforded by
N-acylation dramatically decreased the hERG K* channel binding
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affinity (16a vs 16¢). Removal of the nitrogen atom by replacement
of the piperidine ring with ethyl alcohol also showed significantly
attenuated hERG activity (ICso = >30 nM) whilst retaining both po-
tency and selectivity to Cat S (13b, Cat S IC5o = 6 nM).

We then turned our attention to the CNS penetration of the Cat
S inhibitors, which was assessed by following oral administration
in rats. The results of the CNS penetration assays are shown in
Table 3. The secondary amine 15 and N-acyl piperidine 16¢ did
not penetrate the BBB in rats, whilst the sterically hindered sec-
ondary amine 13a showed CNS penetration. A tertiary amine also
facilitated brain penetration (Table 3; 10b, 16a) although these
compounds also showed high hERG K* channel binding affinity.
The 6-(2-hydroxy ethoxy) 2-cyanopyrimidine compound 13b rap-
idly penetrated the BBB without hERG K* channel affinity at 30 puM.

The pharmacokinetics (PK) parameters were determined for
selected compounds in Sprague-Dawley rats. Representative PK
results are shown in Table 4. After intravenous administration
compounds, 10b, 16a, and 13b were distributed with the Vg5 of
1.2-9.8 L/kg and eliminated with the apparent half-lives of 1.5-
11.8 h. The maximum plasma concentration (Cnmax) values of the
compounds after oral administration were 298-907 nM and the
estimated bioavailabilities (F) ranged from 14% to 40%.

Having developed both orally active and brain-penetrating Cat S
inhibitors, we next turned to evaluate in vivo efficacy. Multiple
sclerosis (MS) is a chronic demyelinating disease of the CNS char-
acterized by scarring plaques distributed along the intracerebral
white matter and the spinal cord. The most suitable model of MS
is experimental autoimmune encephalomyelitis (EAE) that has
well-defined immunologic and genetic profiles for the murine sys-
tem.!® We thus evaluated the effect of 10b on the induction of the
acute phase of the chronic progressive form of EAE in SJL/] mice.?°
Oral administration of 10b (10 mg/kg) twice a day for 21 days pre-
vented the onset of the acute phase of the chronic progressive form
of EAE (Fig. 3). These data suggest that brain-penetrating Cat S
inhibitors might be useful for the treatment of MS.

We also evaluated the anti-neuropathic pain effect of the devel-
oped Cat S inhibitors 10b and 13b in Wister rats following oral
administration.? Both compounds reversed established mechanical
hyperalgesia in a dose dependent fashion. The activities of 10b and
13b were producing up to 50% reversal of the hyperalgesia (Fig. 4).
Following twice daily administration for 5 days, the anti-hyperal-
gesic activity of the first dose of 13b (30 mg/kg) against neuropath-
ic hyperalgesia was maintained without serious side effect (Fig. 5).
These findings suggest that Cat S inhibition has great promise as a
new therapeutic treatment for neuropathic pain.

In summary, we discovered brain-penetrating Cat S inhibitors
with nanomolar potency against Cat S, over 100-fold selectivity
against Cat L, and excellent PK profiles after overcoming a hERG

1001
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Figure 4. Oral activity of compound 10b (left) and 13b (right) against neuropathic mechanical hyperalgesia in rats. Graph depicts mean + SEM reversal of hyperalgesia from
six animals per treatment group. ~ p <0.001, p <0.01, p <0.05 compared to vehicle by ANOVA followed by Tukey’s HSD test carried out on withdrawal threshold data.
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Figure 5. Effect of repeated administration of 13b on neuropathic pain in rats.
Compound 13b was administered orally in 0.5% methylcellulose/water twice daily
for 5 days. Paw withdrawal thresholds were measured 3 h following administra-
tion. Each point represents mean+SEM from 6 animals/group. ~ p<0.001,
“p<0.01, p<0.05 compared to vehicle by ANOVA followed by Tukey’s HSD test.

K" channel binding issue by modeling the basicity of the 6-substi-
tuent on the 2-cyanopyrimidine core. The compounds demon-
strated in vivo activity for MS and neurophatic pain in rodents.
We believe that brain-penetrating Cat S inhibitors might be useful
for the treatment of these diseases and various other CNS disor-
ders, e.g., AD, CJD, and MG.
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