FISEVIER

Contents lists available at ScienceDirect

# **Tetrahedron Letters**

journal homepage: www.elsevier.com/locate/tetlet



# Nonenzymatic kinetic resolution of $\textit{racemic}\ \alpha$ -hydroxyalkanephosphonates with chiral copper catalyst

Yosuke Demizu, Atsushi Moriyama, Osamu Onomura \*

Graduate School of Biomedical Sciences, Nagasaki University, 1-14 Bunkyo-machi, Nagasaki 852-8521, Japan

### ARTICLE INFO

Article history: Received 5 May 2009 Revised 29 June 2009 Accepted 2 July 2009 Available online 5 July 2009

Keywords: Kinetic resolution Asymmetric benzoylation α-Hydroxyalkanephosphonates Chiral copper complex Molecular recognition

#### ABSTRACT

Kinetic resolution of  $\alpha$ -hydroxyalkanephosphonates was efficiently performed by benzoylation in the presence of copper(II) triflate and (R,R)-Ph-BOX as a catalyst with excellent s value of up to 286. © 2009 Elsevier Ltd. All rights reserved.

are important precursors for biologically active compounds such as HIV-protease inhibitors. Furthermore, they are also important precursors of  $\alpha$ -amino phosphonates. Although a multitude of enzymatic kinetic resolution methods has been developed for preparation of optically pure  $\alpha$ -hydroxyalkanephosphonic acid derivatives, to the best of our knowledge, nonenzymatic methods have not been reported. We recently reported an efficient method for kinetic resolution of 1,2-diols, indepthase in indepth in indepth in associated with chiral ligand (<math>indepth R,indepth R). Box by acylation to obtain optically active alcohols with excellent enantioselectivity. In this communication, we apply our methodology to kinetic resolution of  $\alpha$ -hydrox-

yalkanephosphonates A to afford optically active  $\alpha$ -benzoyloxy-

alkanephosphonates C in high yields and enantioselectivities. This

Optically active  $\alpha$ -hydroxyalkanephosphonic acid derivatives

is based on molecular recognition by Cu(II)-(R,R)-Ph-BOX complex to form the activated intermediates  ${\bf B}$  or  ${\bf B}'$  followed by benzoylation (Scheme 1).

We began by examining the benzoylation of diethyl 1-hydro-xy-2-phenylethylphosphonate (DL-1a) as a model compound to see whether it could be accelerated by chiral copper(II) complex (Scheme 2). The result showed that in the absence of copper(II) triflate and (R,R)-Ph-BOX the reaction of DL-1a with BzCl was slow, while in the presence of copper(II) triflate, the yield of benzoylated compound 2a was somewhat improved. Further improvement was accomplished by using a combination of copper(II) triflate and (R,R)-Ph-BOX to afford 2a in 39% yield with 83% ee. These results suggest that DL-1a is recognized by Cu(II)-(R,R)-Ph-BOX complex in the same way as in kinetic resolution of 1,2-diols. The same way as in kinetic resolution of 1,2-diols.

 $\textbf{Scheme 1.} \ \ \text{Kinetic resolution of } \alpha\text{-hydroxyalkanephosphonates with chiral copper catalyst.}$ 

<sup>\*</sup> Corresponding author. Tel.: +81 95 819 2429; fax: +81 95 819 2476. E-mail address: onomura@nagasaki-u.ac.jp (O. Onomura).

Scheme 2. Benzovlation of DL-1a with or without a catalyst.

Next, we surveyed the effect of ester substituents of  $\alpha$ -hydrox-yalkanephosphonates 1 to optimize their effect. The results are shown in Table 1. The selectivity s values  $^9$  for substrates 1b–d

substituted with methyl, isopropyl, and benzyl ester were slightly lower than that of **1a** with ethyl ester (entries 1–4).<sup>10</sup> We then set to investigate the effect of the base and solvent used.

Table 2 summarizes the effect of bases and solvents on the kinetic resolution of DL-**1a**. Use of Li<sub>2</sub>CO<sub>3</sub>, Na<sub>2</sub>CO<sub>3</sub>, K<sub>2</sub>CO<sub>3</sub>, CaCO<sub>3</sub>, and ZnCO<sub>3</sub> as base gave benzoylated products (R)-**2a**<sup>12</sup> with moderate s values (entries 1–5). Although diisopropylethylamine (Dl-PEA) did not work at all (entry 6), BaCO<sub>3</sub> worked well to give (R)-**2a** with high s value of 24 (entry 7). Consequently, using BaCO<sub>3</sub> as a base, solvent effect was investigated. Among the tested solvents (entries 8–18), aromatic solvents were suitable for the benzoylation (entries 14–18). Chlorobenzene gave the best result with s value of 46 (entry 16). Use of (R,R)-Bn-BOX de-accelerated the benzoylation of DL-**1a** compared with the use of (R,R)-Ph-BOX (entry 17).

**Table 1** Effect of ester group of DL-1a-d<sup>a</sup>

| Entry | Substrate                       |                | Product ( <i>R</i> )- <b>2a</b> — <b>d</b> |                     |                | Recovered (S)-1a-d |                     |    |  |
|-------|---------------------------------|----------------|--------------------------------------------|---------------------|----------------|--------------------|---------------------|----|--|
|       |                                 |                | Yield (%)                                  | ee <sup>b</sup> (%) |                | Yield (%)          | ee <sup>b</sup> (%) |    |  |
| 1     | <b>1a</b> : R <sup>1</sup> = Et | (R)- <b>2a</b> | 39                                         | 83                  | (S)- <b>1a</b> | 48                 | 52                  | 18 |  |
| 2     | <b>1b</b> : $R^1 = Me$          | (R)- <b>2b</b> | 45                                         | 65                  | (S)- <b>1b</b> | 42                 | 65                  | 9  |  |
| 3     | <b>1c</b> : $R^1 = i - Pr$      | (R)-2c         | 32                                         | 68                  | (S)-1c         | 66                 | 38                  | 8  |  |
| 4     | <b>1d</b> : $R^1 = Bn$          | (R)- <b>2d</b> | 38                                         | 50                  | (S)-1d         | 55                 | 35                  | 4  |  |

a DL-1a-d (0.5 mmol), Cu(OTf)<sub>2</sub> (0.025 mmol), (R,R)-Ph-BOX (0.025 mmol), BzCl (0.25 mmol), K<sub>2</sub>CO<sub>3</sub> (0.5 mmol) in CH<sub>2</sub>Cl<sub>2</sub> (3.0 mL) at 0 °C to rt for 12 h.

**Table 2** Effect of bases and solvents on the kinetic resolution<sup>a</sup>

|                 |                                      | 0 0 10 11, 12 11                |                                 | ( )                 | (-)              |                     |    |
|-----------------|--------------------------------------|---------------------------------|---------------------------------|---------------------|------------------|---------------------|----|
| Entry           | Solvent                              | Base                            | Product ( <i>R</i> )- <b>2a</b> |                     | Recovered (S)-1a |                     | S  |
|                 |                                      |                                 | Yield (%)                       | ee <sup>b</sup> (%) | Yield (%)        | ee <sup>b</sup> (%) |    |
| 1               | CH <sub>2</sub> Cl <sub>2</sub>      | Li <sub>2</sub> CO <sub>3</sub> | 11                              | 89                  | 84               | 8                   | 19 |
| 2               | CH <sub>2</sub> Cl <sub>2</sub>      | Na <sub>2</sub> CO <sub>3</sub> | 47                              | 74                  | 43               | 70                  | 14 |
| 3               | CH <sub>2</sub> Cl <sub>2</sub>      | $K_2CO_3$                       | 39                              | 83                  | 48               | 52                  | 18 |
| 4               | CH <sub>2</sub> Cl <sub>2</sub>      | CaCO <sub>3</sub>               | 14                              | 88                  | 79               | 4                   | 16 |
| 5               | CH <sub>2</sub> Cl <sub>2</sub>      | ZnCO <sub>3</sub>               | 30                              | 74                  | 49               | 48                  | 11 |
| 6               | CH <sub>2</sub> Cl <sub>2</sub>      | DIPEA                           | 0                               | _                   | >99              | _                   | _  |
| 7               | CH <sub>2</sub> Cl <sub>2</sub>      | BaCO <sub>3</sub>               | 40                              | 84                  | 51               | 71                  | 24 |
| 8               | CHCl <sub>3</sub>                    | BaCO <sub>3</sub>               | 19                              | 92                  | 73               | 36                  | 34 |
| 9               | ClCH <sub>2</sub> CH <sub>2</sub> Cl | BaCO <sub>3</sub>               | 44                              | 76                  | 48               | 76                  | 17 |
| 10              | THF                                  | BaCO <sub>3</sub>               | Trace                           | _                   | 97               | _                   | _  |
| 11              | i-PrOH                               | BaCO <sub>3</sub>               | Trace                           | _                   | 98               | _                   | _  |
| 12              | AcOEt                                | BaCO <sub>3</sub>               | 12                              | 87                  | 86               | 17                  | 17 |
| 13              | MeCN                                 | BaCO <sub>3</sub>               | 11                              | 78                  | 65               | 25                  | 10 |
| 14              | Benzene                              | BaCO <sub>3</sub>               | 30                              | 92                  | 65               | 48                  | 39 |
| 15              | Toluene                              | BaCO <sub>3</sub>               | 34                              | 88                  | 60               | 61                  | 29 |
| 16              | Chlorobenzene                        | BaCO <sub>3</sub>               | 38                              | 90                  | 55               | 79                  | 46 |
| 17 <sup>c</sup> | Chlorobenzene                        | BaCO <sub>3</sub>               | 17                              | 91                  | 72               | 25                  | 27 |
| 18              | Fluorobenzene                        | BaCO <sub>3</sub>               | 37                              | 91                  | 54               | 71                  | 45 |

<sup>&</sup>lt;sup>a</sup> DL-1a (0.5 mmol), Cu(OTf)<sub>2</sub> (0.025 mmol), (R,R)-Ph-BOX (0.025 mmol), BzCl (0.25 mmol), base (0.5 mmol) in solvent (3.0 mL) at 0 °C to rt for 12 h.

<sup>&</sup>lt;sup>b</sup> Determined by HPLC.

<sup>&</sup>lt;sup>b</sup> Determined by HPLC.

<sup>&</sup>lt;sup>c</sup> (R,R)-Bn-BOX was used instead of (R,R)-Ph-BOX.

Table 3 Kinetic resolution of various  $\alpha$ -hydroxyalkanephosphonates DL-3a- $o^a$ 

| Entry          |    | Substrate<br>R <sup>2</sup>            |                | Product ( <i>R</i> )- <b>4a</b> - <b>o</b> |                     |                | Recovered (S)-3a-o |                     |     |
|----------------|----|----------------------------------------|----------------|--------------------------------------------|---------------------|----------------|--------------------|---------------------|-----|
|                |    |                                        |                | Yield (%)                                  | ee <sup>b</sup> (%) |                | Yield (%)          | ee <sup>b</sup> (%) |     |
| 1              | 3a | Me                                     | (R)- <b>4a</b> | 37                                         | 80                  | (S)- <b>3a</b> | 47                 | 65                  | 18  |
| 2              | 3b | Et                                     | (R)- <b>4b</b> | 26                                         | 88                  | (S)- <b>3b</b> | 56                 | 47                  | 25  |
| 3              | 3с | n-Pr                                   | (R)- <b>4c</b> | 28                                         | >99                 | (S)- <b>3c</b> | 68                 | 37                  | 286 |
| 4              | 3d | (E)-MeCH=CH                            | (R)-4d         | 18                                         | >99                 | (S)- <b>3d</b> | 73                 | 27                  | 259 |
| 5              | 3e | Ph−C≡C                                 | (R)- <b>4e</b> | 45                                         | 42                  | (S)- <b>3e</b> | 47                 | 41                  | 4   |
| 6              | 3f | i-Pr                                   | (R)- <b>4f</b> | 40                                         | 84                  | (S)- <b>3f</b> | 60                 | 50                  | 19  |
| 7 <sup>c</sup> | 3f | i-Pr                                   | (R)- <b>4f</b> | 52                                         | 74                  | (S)- <b>3f</b> | 47                 | 87                  | 32  |
| 8              | 3g | <i>i-</i> Bu                           | (R)- <b>4g</b> | 20                                         | 94                  | (S)- <b>3g</b> | 64                 | 32                  | 44  |
| 9              | 3h | Cyclohexyl                             | (R)- <b>4h</b> | 32                                         | 88                  | (S)- <b>3h</b> | 67                 | 42                  | 24  |
| 10             | 3i | Ph                                     | (R)- <b>4i</b> | Trace                                      | _                   | (S)- <b>3i</b> | >99                | _                   | _   |
| 11             | 3j | CICH <sub>2</sub>                      | (R)- <b>4j</b> | 35                                         | 92                  | (S)- <b>3j</b> | 63                 | 55                  | 42  |
| 12             | 3k | $BnO-(CH_2)_2$                         | (R)- <b>4k</b> | 30                                         | 95                  | (S)- <b>3k</b> | 65                 | 39                  | 57  |
| 13             | 31 | Cbz-NH-(CH <sub>2</sub> ) <sub>2</sub> | (R)- <b>41</b> | 13                                         | 81                  | (S)- <b>31</b> | 71                 | 7                   | 10  |
| 14             | 3m | Boc-NH-(CH <sub>2</sub> ) <sub>2</sub> | (R)-4m         | 29                                         | 94                  | (S)- <b>3m</b> | 55                 | 40                  | 48  |
| 15             | 3n | $BnO-(CH_2)_3$                         | (R)- <b>4n</b> | 27                                         | 88                  | (S)- <b>3n</b> | 53                 | 46                  | 25  |
| 16             | 30 | 2-Furyl                                | (R)- <b>4o</b> | 38                                         | 66                  | (S)- <b>3o</b> | 56                 | 24                  | 6   |

a DL-3a-o (0.5 mmol), Cu(OTf)<sub>2</sub> (0.025 mmol), (R,R)-Ph-BOX (0.025 mmol), BzCl (0.25 mmol), BaCO<sub>3</sub> (0.5 mmol) in chlorobenzene (3.0 mL) at 0 °C to rt for 12 h.

Kinetic resolution of various  $\alpha$ -hydroxyalkanephosphonates DL-3a-o by benzovlation under the optimized reaction conditions<sup>14</sup> is summarized in Table 3.<sup>15</sup> Straight-chained  $\alpha$ -hydroxyalkanephosphonates 3a-d were benzoylated to afford the corresponding optically active (R)-4a-d in moderate yields and with good to excellent enantioselectivities (entries 1-4), while phenylethynylated alcohol **3e** gave benzoylated product **4e** with low s value of 4 (entry 5). Compounds 3f-h with branched chained groups were kinetically resolved with good to high s values (entries 6-9), while benzoylation of phenyl-substituted alcohol 3i did not proceed to afford the corresponding benzoate 4i (entry 10). Straight carbon-chained compounds 3i terminally functionalized with Cl atom, **3k** and **3n** with benzyloxy group gave high s values of 42, 57, and 25, respectively (entries 11, 12, and 15). N-Boc-aminoethylated alcohol **3m** was kinetically resolved with high s value of 48 (entry 14), while N-Cbz-protected one 31 fell short in terms of yield and enantioselectivity (entry 13). Compound 30 substituted with 2-furyl group gave low s value of 6 (entry 16). Using 0.7 equiv of BzCl improved the optical purity of the recovered  $\alpha$ -hydroxyalkanephosphonate (S)-3f (entry 7).

In conclusion, we have demonstrated a new nonenzymatic method for kinetic resolution of  $\alpha$ -hydroxyalkanephosphonates. The mechanistic study of this benzoylation and its further synthetic applications are underway.

# Acknowledgments

O.O. and Y.D. are very grateful to The Naito Foundation and a Grant-in-Aid for Young Scientists (B) (19790017) from the Ministry of Education, Science, Sports and Culture, Japan, respectively.

## References and notes

 (a) Stowasser, B.; Budt, K. H.; Jian-Qi, L.; Peyman, A.; Ruppert, D. Tetrahedron Lett. 1992, 33, 6625; (b) Sasai, H.; Bougauchi, M.; Arai, T.; Shibasaki, M. Tetrahedron Lett. 1997, 38, 2717; (c) Zheng, X.; Nair, V. Tetrahedron 1999, 55,

- 11803; (d) Kim, D. Y.; Wiemer, D. F. Tetrahedron Lett. **2003**, 44, 2803; (e) Saito, B.; Egami, H.; Katsuki, T. J. Am. Chem. Soc. **2007**, 129, 1978; (f) Qiu, M.; Hu, X.-P.; Huang, J.-D.; Wang, D.-Y.; Deng, J.; Yu, S.-B.; Duan, Z.-C.; Zheng, Z. Adv. Synth. Catal. **2008**, 350, 2683; (g) Abell, J. P.; Yamamoto, H. J. Am. Chem. Soc. **2008**, 130, 10521; (h) Uraguchi, D.; Ito, T.; Ooi, T. J. Am. Chem. Soc. **2009**, 131, 3836.
- Kaboudin, B. *Tetrahedron Lett.* **2003**, 44, 1051.
- Recent literatures for kinetic resolution of α-hydroxyalkanephosphonates by enzymatic methods: (a) Zhang, Y.; Yuan, C.; Li, Z. Tetrahedron 2002, 58, 2973; (b) Pàmies, O.; Bäckvall, J. E. J. Org. Chem. 2003, 68, 4815; (c) Wang, K.; Zhang, Y.; Yuan, C. Org. Biomol. Chem. 2003, 1, 3564.
- Mono-benzoylation: (a) Matsumura, Y.; Maki, T.; Murakami, S.; Onomura, O. J. Am. Chem. Soc. 2003, 125, 2052; (b) Matsumura, Y.; Maki, T.; Tsurumaki, K.; Onomura, O. Tetrahedron Lett. 2004, 45, 9131; Mono-carbamoylation: (c) Matsumoto, K.; Mitsuda, M.; Ushijima, N.; Demizu, Y.; Onomura, O.; Matsumura, Y. Tetrahedron Lett. 2006, 47, 8453; Mono-tosylation: (d) Demizu, Y.; Matsumoto, K.; Onomura, O.; Matsumura, Y. Tetrahedron Lett. 2007, 48, 7605.
- Mitsuda, M.; Tanaka, T.; Tanaka, T.; Demizu, Y.; Onomura, O.; Matsumura, Y. Tetrahedron Lett. 2006, 47, 8073.
- Tosylation of α-hydroxyalkanamides: (a) Onomura, O.; Mitsuda, M.; Nguyen, T.
   T. M.; Demizu, Y. Tetrahedron Lett. 2007, 48, 9080; Benzoylation and tosylation of β-hydroxyalkanamides: (b) Demizu, Y.; Kubo, Y.; Matsumura, Y.; Onomura, O. Synlett 2008, 433.
- Asymmetric oxidation of 1,2-diols: (a) Onomura, O.; Arimoto, H.; Matsumura, Y.; Demizu, Y. Tetrahedron Lett. 2007, 48, 8668; (b) Minato, D.; Arimoto, H.; Nagasue, Y.; Demizu, Y.; Onomura, O. Tetrahedron 2008, 64, 6675; Asymmetric oxidation of aminoaldehydes: (c) Minato, D.; Nagasue, Y.; Demizu, Y.; Onomura, O. Angew. Chem., Int. Ed. 2008, 47, 9458; Review: (d) Matsumura, Y.; Onomura, O.; Demizu, Y. Yuki Gosei Kagaku Kyokaishi 2007, 65, 216.
- 8. Tosylation of DL-1a with chiral copper(II) catalyst gave the corresponding tosylated product in 26% yield with 0% ee.
- 9. Kagan, H. B.; Fiaud, J. C.. In *Topics in Stereochemistry*; Eliel, E. L., Ed.; Wiley & Sons: New York, 1988; Vol. 18, p 249.
- The absolute stereoconfiguration of recovered (S)-1a was determined by comparing with specific rotation of authentic sample. Compound (S)-1a: [α]<sup>20</sup> +11.7 (c 1.0, CHCl<sub>3</sub>, 79% ee). [lit.<sup>11</sup> (S)-1a (91% ee); [α]<sup>20</sup> +21.9 (c 0.9, CHCl<sub>3</sub>)].
- 11. Yokomatsu, T.; Yoshida, Y.; Suemune, K.; Yamagishi, T.; Shibuya, S. *Tetrahedron: Asymmetry* **1995**, *6*, 365.
- 12. Absolute stereoconfigurations of (R)-2b<sup>13</sup> were determined by comparing with specific rotation of authentic sample. Absolute stereoconfigurations of (R)-2c and 2d shown in Table 1 were deduced on the basis of those of (R)-2a and 2b.
- 13. Rubio, M.; Suárez, A.; Álvarez, E.; Pizzano, A. Chem. Commun. 2005, 628.
- 14. A typical procedure for kinetic resolution of DL-1a: Under an aerobic atmosphere, a solution of Cu(OTf)<sub>2</sub> (9.0 mg, 0.025 mmol) and (R,R)-Ph-BOX (8.4 mg, 0.025 mmol) in chlorobenzene (3 mL) was stirred for 10 min. Into the solution were added DL-1a (129 mg, 0.5 mmol), BaCO<sub>3</sub> (99 mg, 0.5 mmol), and BzCl (29 μL, 0.25 mmol) at 0 °C. The resulting mixture was allowed to stand

<sup>&</sup>lt;sup>b</sup> Determined by HPLC.

<sup>&</sup>lt;sup>c</sup> BzCl (0.35 mmol) was used.

until it warmed to room temperature and stirred for 12 h. The solution was poured into water and extracted with CH<sub>2</sub>Cl<sub>2</sub> (20 mL × 3). The combined organic layer was dried over MgSO<sub>4</sub> and the solvent was removed under reduced pressure. The residue was purified by silica gel column chromatography (n-hexane/AcOEt = 1: 1) to afford (R)-2a (38% yield, 90% ee) as colorless oil. [ $\alpha$ ] $_D^{20}$  –95.3 (c 1.2, CHCl $_3$ , 90% ee); IR(neat) 2984, 1732, 1273, 1111, 1061, 974, 710 cm $^{-1}$ ;  $^{1}$ H NMR (300 MHz, CDCl $_3$ )  $\delta$  1.28 (t, J = 6.6 Hz, 6H), 3.16–3.40 (m, 2H), 4.05–4.23 (m, 4H), 5.68–5.80 (m, 1H), 7.13–7.34 (m, 7.43 (t, J = 8.1 Hz, 2H), 7.56 (t, J = 7.2 Hz, 1H), 7.99 (d, J = 6.9 Hz, 2H);  $^{13}$ C NMR (100 MHz, CDCl $_3$ )  $\delta$  16.2 (2C), 35.6, 62.6, 67.8, 69.5,126.6 (2C), 128.2 (3C), 129.0

- (3C), 129.5 (2C), 133.1, 136.0, 164.8; MS [HR-EI] calcd for  $C_{19}H_{23}O_5P$  362.1283 found 362.1247. HPLC chiralcel OJ-H column (4.6 mm $\phi$ , 250 mm), n-hexane/2-propanol = 100:1, wavelength: 254 nm, flow rate: 1.0 mL/min, retention time: 24.5 min for (S)-2a, 26.7 min for (R)-2a.
- 15. Absolute stereoconfigurations of recovered (S)-3a, 3a (S)-3b, 3a (S)-3c, 3b (S)-3j<sup>3c</sup>, and (S)-3n<sup>16</sup> were determined by comparing with specific rotation of authentic samples. Absolute stereoconfigurations of (R)-4d-h, 4k-m shown in Table 3 were deduced on the basis of those of (R)-4a-c, 4l, 4n.
- Zhou, X.; Liu, X.; Yang, X.; Shang, D.; Xin, J.; Feng, X. Angew. Chem., Int. Ed. 2008, 47, 392.