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An efficient synthesis of (+)-minfiensine has been accomplished employing an intramolecular Diels—Alder cycloaddition/rearrangement cascade
of an amidofuran derivative. Thermal reorganization of the initially formed [4 + 2]-cycloadduct affords the critical tetrahydroiminoethanocarbazole

skeleton of the alkaloid in high yield.

In 1989, the indole alkaloid minfiensine (1) containing
the 1,2,3,4-tetrahydro-9a,4a-iminoethanocarbazole core (2)
was isolated from the African plant Strychnos minfiensis by
Massiot and co-workers (Figure 1).! Since Overman’s inau-
gural synthesis of minfiensine,” this structure and related
akuammiline indole alkaloids have continued to attract syn-
thetic interest due to their unusual polycyclic architecture and
diverse biological activity.>® In 2008, Qin and co-workers
also accomplished the total synthesis of (4)-minfiensine (1) in
18 steps proceeding in a 0.4% overall yield by making use of
an a-diazoketone cyclopropanation, ring-opening, and ring-
closure reaction starting from a N-tosyl tetrahydrocarboline
ester.” Later, the MacMillan group reported a more efficient
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Figure 1. Core skeleton of akuammiline alkaloids.

synthetic route to this alkaloid using a cascade organocatalysis
sequence to build the central tetracyclic pyrroloindoline
framework and obtaining (+)-minfiensine in 9 steps and
21% overall yield from commercial materials.®

Our retrosynthetic analysis of minfiensine (1) is outlined
in Scheme 1. The synthetic plan that we initially had in
mind involved generation of the E-ring of minfiensine by a
palladium catalyzed intramolecular enolate coupling” of
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Scheme 1

the tethered vinyl iodide 3 as was recently carried out in
our synthesis of strychnine.'” Our first attempt to synthe-
size the required tetracyclic precursor 4 was based on the
assumption that 4 would be formed by protonation of the
3a-aryl-2,3,3a,4-tetrahydro-1 H-indol-5(6 H)-one 5. This
compound would, in turn, be generated by an IMDAF
cycloaddition reaction of amidofuran 6 followed by a
subsequent rearrangement of the initially formed [4 + 2]-
oxabicyclic adduct."! However, all of our efforts to form 5
from the thermolysis of furan 6 only resulted in recovered
starting material. Apparently, the presence of a substituent
group in the ortho position of the aromatic ring causes an
unfavorable steric interaction with the furan ring in the
reactive “Diels—Alder conformation”'? thereby diminish-
ing the overall rate of the IMDAF cycloaddition of 6.
Having been thwarted in attempts to use amidofuran 6
as a precursor to tetracycle 4, we decided that the simplest
adjustment to our IMDAF approach would be to investi-
gate the thermolysis of the related aminofuran 8. As we
were unsure as to whether the critical cycloaddition/
rearrangement cascade would occur with 8, we felt it
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prudent to first explore a model system to test the validity
of this approach. With this in mind, furanyl carbamate 12
was prepared by application of a Buchwald—Hartwig
copper catalyzed amidation reaction.'® The keto group
present in the resulting cross coupled product 11 derived
from 9 and 10 was converted into the corresponding
carbamate 12 using standard methodology.'*
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We were pleased to find that heating a sample of furanyl
carbamate 12a (or 12b) gave rise to the dihydro-2H-
carbazolone 13a (or 13b) in ca. 80% yield (Scheme 2)
thereby providing a promising prognosis for the success of
our IMDAF cycloaddition approach toward minfiensine.

Our synthesis of the alkaloid minfiensine began with
commercially available boronate 14 which was smoothly
transformed through a Suzuki—Miyaura cross-coupling
reaction with vinyl iodide 15 into the o-styryl substituted
amide 16 in 63% yield (Scheme 3). Conversion of
the alcohol into the corresponding mesylate 17 followed
by reaction with allyl amine provided the expected second-
ary amine 18 (R = H) which was easily converted to
the corresponding #-Boc carbamate 19 (72%). After a
thorough screening of various catalytic systems (including
several Pd(0) catalysts and bis-phosphine ligand combina-
tions), we found that Buchwald’s Cul catalytic system gave
the most consistent and promising results.'> Thus, heating
a mixture of 19 together with catalytic copper(I)-thiophene-
2-carboxylate (CuTC) and Cs,COj in toluene at 90 °C
produced the Diels—Alder cycloadduct 21 derived from a
subsequent [4 + 2]-cycloaddition of the expected cross-
coupled product (i.e., 8). Further heating of 21 at 120 °C
afforded 23 (81%) obtained from the sequential ring-
opening—deprotonation cascade.'? A related sequence of
reactions occurred when the simpler NH-amine 18 was
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Scheme 3
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cross-coupled with 2-bromofuran using CuTC as the
catalyst. In this case, cycloadduct 20 was obtained in
82% yield. When 20 was heated in toluene at 120 °C in
the presence of catalytic Mgl,, the only product isolated
in 60% yield corresponded to tetracycle 24 presumably
derived from an acid catalyzed cyclization of 22. Removal
of the N-allyl group from 24 was easily realized with
Pd(PPhs); and N,N-dimethylbarbituric acid using a pro-
cedure developed by Guibé and co-workers in 85% yield.'®
The required vinyliodide cyclization precursor 26 was then
secured in 67% yield by reaction of secondary amine
25 with Z-2-iodo-2-butenyl mesylate'” employing K>,CO;
as the base in acetonitrile at 70 °C. With tetracyclic
iodoketone 26 in hand, we turned toward the formation
of minfiensine by a palladium-catalyzed intramolecular
enolate/vinyl iodide coupling (Scheme 4).”'® The reaction
was carried out in methanol using 10 mol % of PdCl,-
(dppf) and 4 equiv of K,CO; at 70 °C which afforded the
expected pentacyclic ketone 27 in 67% yield. Straight-
forward conversion of 27 to the corresponding enol
triflate 28 using Comins’ reagent followed by a Stille
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cross-coupling reaction with tri-n-butylstannylmethanol'®

furnished pentacycle 29. Finally, removal of the acetyl
group with hydrazine led to the isolation of (4)-minfiensine
in 78% yield.

In summary, an efficient synthesis of (+)-minfiensine
has been achieved. A distinctive feature of the synthesis is
the use of an intramolecular Diels—Alder cycloaddition/
rearrangement cascade of an amidofuran derivative. The
synthetic sequence starts with an easily prepared o-styryl
substituted amide by a Suzuki—Miyaura cross-coupling
reaction. A subsequent Buchwald—Hartwig amidation
leads to a transient furanyl amide which undergoes ready
[4 + 2]-cycloaddition across the tethered p-bond. Thermal
reorganization of the resulting cycloadduct affords the
critical tetrahydroiminoethanocarbazole skeleton of the
alkaloid in high yield. The functionality present in the
pentacyclic skeleton allowed for the final elaboration to
(+)-minfiensine.
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