LETTERS

Intramolecular [1,4]-S- to O-Silyl Migration: A Useful Strategy for Synthesizing Z-Silyl Enol Ethers with Diverse Thioether Linkages

Changzhen Sun,^{†,‡} Yuebao Zhang,^{†,‡} Peihong Xiao,[†] Hongze Li,[†] Xianwei Sun,[†] and Zhenlei Song^{*,†,‡}

[†]Key Laboratory of Drug-Targeting of Education Ministry and Department of Medicinal Chemistry, West China School of Pharmacy, and [‡]State Key Laboratory of Biotherapy, West China Hospital, Sichuan University, Chengdu 610041, P. R. China

Supporting Information

ABSTRACT: An intramolecular [1,4]-S- to O-silyl migration has been used to form silyl enol ethers with Z-configurational control. The silyl migration also creates a new anion center at sulfur, which can subsequently react with electrophiles to generate Z-silyl enol ethers with diverse thioether linkages. The synthetic utility of this pathway was demonstrated by modifying the Z-silyl enol ethers with aldehydes via a Mukaiyama aldol reaction or Prins cyclization to generate functionalized organosulfur compounds.

S ilyl enol ethers¹ are important synthons in a broad array of synthetic transformations. The double-bond configuration is a key determinant of the stereochemical outcomes of reactions in which they participate, making the preparation of geometrically defined silyl enol ethers a longstanding goal of organic synthesis.² Traditionally silyl enol ethers are synthesized by α -deprotonation of carbonyl compounds, followed by intermolecular silylation of the resulting enolate. Extensive studies have shown that deprotonating acyclic ketones under kinetic conditions favors formation of *E*-enolate, while deprotonating the ketone under thermodynamic conditions favors the *Z*-enolate (Scheme 1, top). However, this configura-

Scheme 1. Intermolecular Silylation of Enolate To Form *E*and Z-Silyl Enol Ether (Top). Intramolecular [1,4]-S- to O-Silyl Migration Leads to Z-Silyl Enol Ether (Bottom)

tional control is sometimes inefficient and unreliable, highlighting the need for intermolecular reactions that provide better stereochemical control.

A potentially better alternative might be via an intramolecular pathway through silyl migration.³ Surprisingly, although intramolecular anionic silyl migration between a carbon and an oxygen atom is a well-established, valuable process in organic chemistry,⁴ the corresponding migration from a sulfur to an oxygen has rarely been studied.^{5,6} This transformation should be thermodynamically favorable because the Si-O bond is stronger than the Si-S bond (ca. 110 vs 70 kcal/mol).⁷ Intrigued by the potential ease of this silvl migration,⁸ we envisioned using it to form silyl enol ethers with configurational control. In our proposed process (Scheme 1, bottom), deprotonation of the α -silvlihio ketone 1 would generate a mixture of enolates E-2 and Z-2. It should be possible to shift the product equilibrium permanently toward Z-2 if only the Zenolate could undergo intramolecular [1,4]-S- to O-silyl migration rapidly and irreversibly to thiometallo Z-silyl enol ether 3. The sulfur would act not only as a carrier for the silyl migration but also as an anion center in 3 for the subsequent formation of a C-S bond with electrophiles. In this way, a thioether linkage⁹ could be introduced into 3 to provide Z-silyl enol ether 4. Here, we report detailed studies of this reaction pathway.

The model scaffold α -silylthio ketone **1a** was prepared in 92% yield by substituting α -bromo acetophenone with commercially available HSSi(*i*-Pr)₃. The reaction was initially performed in THF using LiHMDS as the base and 1.2 equiv of HMPA as additive (Table 1, entry 1). After deprotonation at -78 °C for 2.0 h, the reaction was warmed to 0 °C to promote *S*- to *O*-silyl migration and subsequent *S*-allylation with allylbromide. The *Z*-silyl enol ether **4a** was obtained in 41% yield as a single isomer. The low efficiency is probably because the relatively strong Li⁺ counterion retards both silyl migration and *S*-allylation. Indeed, using the weaker counterions Na⁺ or K⁺ led to higher yields of 74% and 52%, respectively (entries 2 and 3).¹⁰ The fact that we observed no O-allylation implies that

Received: December 21, 2013 Published: January 28, 2014

Table 1. Screening of Reaction Conditions

	Ph SSi 1a	base, solver HMPA, -78 °C to then allylbrom (Si = Si(<i>i</i> -Pr	$\begin{array}{c} \text{nt} & \text{OSi} \\ \hline 0 \text{ °C} & \text{Ph} & \text{S} \\ \text{nide} \\ \hline 0_{3} & \text{4a} (Z/E \ge 95) \end{array}$	 5) ^b
entry	base	solvent	HMPA (equiv)	yield ^c (%)
1	LiHMDS	THF	1.2	41
2^a	NaHMDS	THF	1.2	74
3	KHMDS	THF	1.2	52
4	NaHMDS	THF		71
5	NaHMDS	Et_2O	1.2	65

^{*a*}Reaction conditions: 0.15 mmol of 1a, 0.18 mmol of HMPA, and 0.20 mmol of NaHMDS (1.0 M in THF) in 2.0 mL of THF at -78 °C, 2.0 h, warmed to 0 °C, 0.5 h; then 0.13 mmol of allylbromide at 0 °C, 2.0 h. ^{*b*}The Z-configuration was assigned by NOE experiments on 4a. Ratios were determined by ¹H NMR spectroscopy. ^{*c*}Isolated yields after purification by silica gel column chromatography.

the S- to O-silyl migration is irreversible. The reaction proceeded readily with NaHMDS in the absence of HMPA, though a longer allylation time was required to achieve a final yield of 71% (entry 4). Et₂O was also a less effective solvent than THF, giving **4a** in 65% yield (entry 5).

Next, the scope of electrophiles was tested using 1a and a range of alkyl halides (Table 2, entries 1–3), benzyl bromide (entry 4), and propargyl bromide (entry 5). These reactions gave Z-silyl enol ethers 4a-f tethered with diverse thioether linkages. Monosubstituted and geminal disubstituted epoxides also proved to be suitable electrophiles. The ring-opening occurred regioselectively at the less substituted carbon to afford 4g-1 in good yields (entries 6–11). Neither intra- nor intermolecular *O*- to *O*-silyl migration was observed after epoxide opening.

The multicomponent reaction was compatible with α silylthio ketones **1b**-**f** that contained an alkyl group (Table 3, entry 1), an electron-rich or -deficient phenyl group (entries 2 and 3), or a heterocyclic moiety (entries 4 and 5). The temperature for epoxide opening had to be increased to 60 °C to ensure a good yield, except for the reaction in entry 3. Although ketone **1b** possessed two α -methylenes on each side of the carbonyl group, deprotonation occurred regioselectively at the thio-substituted methylene, even though this position is more sterically hindered. This selectivity may be because the H on the thio-substituted methylene is more acidic.

A control experiment was performed using an equimolar mixture of 1a and acetophenone 5 under optimal conditions (Scheme 2). The reaction with epoxide led to Z-silyl enol ether 4i in 68% yield. The original 5 was recovered in 98% yield, and no intermolecular silylation product 6 was detected. These results indicate that under our reaction conditions formation of 4i proceeds by intramolecular [1,4]-S- to O-silyl migration of the corresponding Z-enolate. In contrast, β -thiosilyl propiophenone 7, which contains an additional methylene between the carbonyl and thio groups, gave a complex reaction that did not generate the expected thiometallo Z-silyl enol ether 8. The failure to form 8 probably reflects the longer transfer distance for [1,5]-S- to O-silyl migration, making it less favorable than the analogous [1,4]-migration.^{8,11}

To demonstrate the synthetic utility of our approach, the resulting Z-silyl enol ether **4b** was used as a valuable synthon in Mukaiyama aldol reactions¹² with aldehydes (Scheme 3). The reaction using benzaldehyde gave α -thio β -silylated hydroxy

Table 2. Scope of Electrophiles

	0 II	NaHMDS, THF/HMPA OSi			
	Ph SSi	-78 °C, 21	h to 0 °C, 0.5 h	Ph	
	1a	then electrophile, 0 (Si = Si(<i>i</i> -Pr)		4 (Z/E ≥ 95:5) ^a	
entry	electrophile		product		yield ^b
1	Mel		OSi Ph SMe	4b	93%
2	BrCH ₂ CO ₂	Et	OSi Ph SCH	₂ CO ₂ Et 4c	82%
3	Br		OSi Ph S	<\$ ⁰ ^{4d}	82%
4	BnBr		OSi Ph SBn	4e	80%
5	Et ₃ Si	Br	OSi Ph	SiEt ₃ 4f	86%
6	°≻_ _{Me}		OSi Ph	OH ↓ 4g Me	63%
7	°► _{Ph}		OSi Ph	OH └─ _{Ph} 4h	70%
8	° × v	<i>n</i> -Bu	OSi Ph	OH 4i On-Bu	74%
9	° V	Ph	OSi Ph S	OH 4j OPh	67%
10		ОРМВ	Ph S		68%
11	o Me Ph		OSi Ph S	OH ↓ 4I Ph	62%

"Ratios were determined using ¹H NMR spectroscopy. ^bIsolated yields after purification by silica gel column chromatography.

ketone **9a** in 68% yield and with *syn*-stereochemical control. Performing the reaction with branched or unbranched alkyl aldehydes directly generated, respectively, α -thio β -hydroxy ketones **9b** in 50% yield or **9c** in 93% yield.

In addition, we showed that Z-silyl enol ethers prepared from epoxides subsequently underwent an S-tethered Prins cyclization with an aldehyde.¹³ This approach proceeded through a chairlike transition state **TS-11** to afford a wide range of functionalized 1,4-oxathianes **11** in good yields and with 2,6*cis*/5,6-*trans* stereochemical control (Scheme 4). As some 1,4oxathianes selectively activate the ideal M3 receptor subtype,¹⁴ the synthetic approach we describe here may be useful for generating new potential muscarinic receptor agonists.

In summary, intramolecular [1,4]-S- to O-silyl migration has been utilized to form silyl enol ethers with Z-configurational control. The silyl migration also creates a new anion center at sulfur, which can subsequently react with electrophiles to generate Z-silyl enol ethers with diverse thioether linkages. The synthetic value of this approach was demonstrated by further

vield^b

50%

55%

^{*a*}Ratios were determined by ¹H NMR spectroscopy. ^{*b*}Isolated yields after purification by silica gel column chromatography. ^{*c*}Epoxide opening was performed at 0 °C.

Scheme 2. Control Experiment To Confirm the Intramolecular [1,4]-S- to O-Silyl Migration and Attempts To Achieve [1,5]-S- to O-Silyl Migration of 7

^{*a*}Reaction conditions: 0.10 mmol of **4b**, 0.20 mmol of aldehyde, and 0.10 mmol of Lewis acid in 1.5 mL of CH₂Cl₂ at -78 °C. ^{*b*}BF₃·OEt₂ was used to generate **9a** and **9b**; TiCl₄, to generate **9c**. ^{*c*}The synstereochemistry was assigned based on NOE experiments on **10**. Ratios were determined by ¹H NMR spectroscopy. ^{*d*}Isolated yields after purification by silica gel column chromatography.

^{*a*}Reaction conditions: 0.10 mmol of 4i, 0.20 mmol of aldehyde, and 0.10 mmol of TMSOTf in 1.5 mL f Et_2O , -78 to 0 °C. ^{*b*}Isolated yields after purification by silica gel column chromatography. ^{*c*}The 2,6-cis/5,6-trans-stereochemistry was assigned based on NOE experiments on **11a**. Ratios were determined by ¹H NMR spectroscopy.

reacting the Z-silyl enol ethers with aldehydes via the Mukaiyama aldol reaction or the Prins cyclization to provide functionalized organosulfur compounds. Further applications of this methodology are underway.

ASSOCIATED CONTENT Supporting Information

Experimental procedures and spectra data for products. This material is available free of charge via the Internet at http:// pubs.acs.org.

AUTHOR INFORMATION

Corresponding Author

*E-mail: zhenleisong@scu.edu.cn.

Author Contributions

[‡]These authors contributed equally.

Notes

The authors declare no competing financial interest.

ACKNOWLEDGMENTS

We are grateful for financial support from the NSFC (21172150, 21321061, 21290180), the NBRPC (973 Program, 2010CB833200), the NCET (12SCU-NCET-12-03), and Sichuan University 985 project.

REFERENCES

For reviews, see: (a) Brownbridge, P. Synthesis 1983, 1.
 (b) Kuwajima, I.; Nakamura, E. Acc. Chem. Res. 1985, 18, 181.
 (c) Fleming, I.; Barbero, A.; Walter, D. Chem. Rev. 1997, 97, 2063.

Organic Letters

(d) Kobayashi, S.; Manabe, K.; Ishitani, H.; Matsuo, J. I. *Sci. Synth.* **2002**, *4*, 317. (e) Chen, B. C.; Zhou, P.; Davis, F. A.; Ciganek, E. Org. *React.* **2003**, *62*, 1.

(2) For some leading references, see: (a) Heathcock, C. H.; Buse, C. T.; Kleschick, W. A.; Pirrung, M. C.; Sohn, J. E.; Lampe, J. J. Org. Chem. 1980, 45, 1066. (b) Corey, E. J.; Gross, A. W. Tetrahedron Lett. 1984, 25, 495. (c) Hall, P. L.; Gilchrist, J. H.; Collum, D. B. J. Am. Chem. Soc. 1991, 113, 9571. (d) Smietana, M.; Mioskowski, C. Org. Lett. 2001, 3, 1037. (e) Aggarwal, V. K.; Sheldon, C. G.; MacDonald, G. J.; Martin, W. P. J. Am. Chem. Soc. 2002, 124, 10300. (f) Denmark, S. E.; Pham, S. M. J. Org. Chem. 2003, 68, 5045. (g) Ooguri, A.; Ikeda, Z.; Matsubara, S. Chem. Commun. 2007, 4761. (h) Ishii, A.; Kojima, J.; Mikami, K. Org. Lett. 1999, 1, 2013. (i) Ho, C. Y.; Ohmiya, H.; Jamison, T. F. Angew. Chem., Int. Ed. 2008, 47, 1893. (j) Tsubouchi, A.; Enatsu, S.; Kanno, R.; Takeda, T. Angew. Chem., Int. Ed. 2010, 49, 7089.

(3) (a) Reich, H. J.; Rusek, J. J.; Olson, R. E. J. Am. Chem. Soc. 1979, 101, 2225. (b) Reich, H. J.; Olson, R. E.; Clark, M. C. J. Am. Chem. Soc. 1980, 102, 1423. (c) Kato, M.; Mori, A.; Oshino, H.; Enda, J.; Kobayashi, K.; Kuwajima, I. J. Am. Chem. Soc. 1984, 106, 1773. (d) Enda, J.; Kuwajima, I. J. Am. Chem. Soc. 1985, 107, 5495. (e) Song, Z. L.; Kui, L. Z.; Sun, X. W.; Li, L. J. Org. Lett. 2011, 13, 1440.

(4) For reviews, see: (a) Brook, A. G. Acc. Chem. Res. 1974, 7, 77. (b) Kira, M.; Iwamoto, T. Silyl Migrations. In The Chemistry of Organic Silicon Compounds; Rappoport, Z., Apeloig, Y., Eds.; John Wiley & Sons, Ltd.: New York, 2001; Vol. 3, pp 853-948. (c) Moser, W. H. Tetrahedron 2001, 57, 2065. (d) Smith, A. B., III; Adams, C. M. Acc. Chem. Res. 2004, 37, 365. (e) Smith, A. B., III; Wuest, W. M. Chem. Commun. 2008, 44, 5883. For some leading references, see: (f) Stefano, M.; Gwerydd, G.; Stirling, C. J. M. Chem. Commun. 1992, 28, 54. (g) Talami, S.; Stirling, C. J. M. Can. J. Chem. 1999, 77, 1105. (h) Stefano, M.; Stirling, C. J. M. J. Chem. Soc, Perkin Trans. 1 2002, 28. (i) Hayashi, M.; Nakamura, S. Angew. Chem., Int. Ed. 2011, 50, 2249. (j) Li, H.; Liu, L. T.; Wang, Z. T.; Zhao, F.; Zhang, S. G.; Zhang, W. X.; Xi, Z. F. Chem. - Eur. J. 2011, 17, 7399. (k) Sasaki, M.; Kondo, Y.; Kawahata, M.; Yamaguchi, K.; Takeda, K. Angew. Chem., Int. Ed. 2011, 50, 6375. (1) Martin, D. B. C.; Vanderwal, C. D. Chem. Sci. 2011, 2, 649. (m) Smith, A. B., III; Kim, W. S. Proc. Nat. Acad. Sci. U.S.A. 2011, 108, 6787. (n) Smith, A. B., III; Tong, R. B.; Kim, W. S.; Maio, W. A. Angew. Chem., Int. Ed. 2011, 50, 8904. (o) Smith, A. B., III; Hoye, A. T.; Martinez-Solorio, D.; Kim, W. -S.; Tong, R. B. J. Am. Chem. Soc. 2012, 134, 4533. (p) Melillo, B.; Smith, A. B., III. Org. Lett. 2013, 15, 2282. (q) Nguyen, M. H.; Smith, A. B., III. Org. Lett. 2013, 15, 4258. (r) Nguyen, M. H.; Smith, A. B., III. Org. Lett. 2013, 15, 4872. (s) Rouf, A. M.; Jahn, B. O.; Ottosson, H. Organometallics 2013, 32, 16. (t) Gao, L.; Lu, J.; Song, Z. L.; Lin, X. L.; Xu, Y. J.; Yin, Z. P. Chem. Commun. 2013, 49, 8963.

(5) (a) Guindon, Y.; Young, R. N.; Frenette, R. Synth. Commun.
1981, 11, 391. (b) Harpp, D. N.; Kobayashi, M. Tetrahedron Lett.
1986, 27, 3975. (c) Brittain, J.; Gareau, Y. Tetrahedron Lett. 1993, 34, 3363. (d) Cai, Y. D.; Roberts, B. P. Tetrahedron Lett. 2001, 42, 8235. (6) For recent studies of anionic S to O phosphate migration, see:
(a) Robertson, F.; Wu, J. Org. Lett. 2010, 12, 2668. (b) Han, X.; Zhang, Y.; Wu, J. J. Am. Chem. Soc. 2010, 132, 4104. (c) Robertson, F. J.; Wu, J. J. Am. Chem. Soc. 2012, 134, 2775. (d) Li, F.; Calabrese, D.; Brichacek, M.; Lin, I.; Njardarson, J. T. Angew. Chem., Int. Ed. 2012, 51, 1938.

(7) Evans, D. A.; Truesdale, L. K.; Grimm, K. G.; Nesbitt, S. L. J. Am. Chem. Soc. 1977, 99, 5009.

(8) Sun, X. W.; Song, Z. L.; Li, H. Z.; Sun, C. Z. Chem. – Eur. J. 2013, 17, 7399.

(9) (a) Black, J.; Durant, G.; Emmett, J.; Ganellin, C. Nature 1974, 248, 65. (b) Trail, P. A.; Willner, D.; Lasch, S. J.; Henderson, A. J.; Hofstead, S.; Casazza, A. M.; Firestone, R. A.; Hellström, I.; Hellström, K. Science 1993, 261, 212. For selected reviews on organosulfur chemistry, see: (c) Kondo, T.; Mitsudo, T. Chem. Rev. 2000, 100, 3205. (d) Qiao, Z.; Liu, H.; Xiao, X.; Fu, Y.; Wei, J.; Li, Y.; Jiang, X. F. Org. Lett. 2013, 15, 2594. (e) McReynolds, M. D.; Dougherty, J. M.; Hanson, P. R. Chem. Rev. 2004, 104, 2239. (f) Beletskaya, I. P.;

Ananikov, V. P. Chem. Rev. 2011, 111, 1596. (g) Castarlenas, R.; Giuseppe, A. D.; Pérez-Torrente, J. J.; Oro, L. A. Angew. Chem., Int. Ed. 2013, 52, 211. (h) Pan, L.; Bi, X. H.; Liu, Q. Chem. Soc. Rev. 2013, 42, 1251. (i) Liu, H.; Jiang, X. F. Chem.—Asian J. 2013, 8, 2546.

(10) Smith, A. B., III; Xian, M.; Kim, W. S.; Kim, D. S. J. Am. Chem. Soc. 2006, 128, 12368.

(11) Lautens, M.; Delanghe, P. H. M.; Goh, J. B.; Zhang, C. H. J. Org. Chem. 1992, 57, 3270.

(12) (a) Mukaiyama, T.; Banno, K.; Narasaka, K. J. Am. Chem. Soc. 1974, 96, 7503. For selected reviews on Mukaiyama aldol and its variants, see: (b) Mukaiyama, T. Org. React. 1982, 28, 203. (c) Casiraghi, G.; Zanardi, F.; Appendino, G.; Rassu, G. Chem. Rev. 2000, 100, 1929. (d) Palomo, C.; Oiarbide, M.; Garcia, J. M. Chem. Soc. Rev. 2004, 33, 65.

(13) For the latest review on Prins cyclization, see: Crane, E. A.; Scheidt, K. A. Angew. Chem., Int. Ed. 2010, 49, 8316.

(14) Piergentili, A.; Quaglia, W.; Giannella, M.; Bello, F. D.; Bruni, B.; Buccioni, M.; Carrieric, A.; Ciattinid, S. *Bioorg. Med. Chem.* **2007**, *15*, 886.

987