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Abstract: Two blue emitters, 2,7-bis(9-benzyl-9H-carbazol-2-yl)pyrene and 2,7-

bis(4-(5-phenyl-1,3,4-oxadiazol-2-yl)phenyl)pyrene, were synthesized by a Suzuki 

coupling reaction. Photophysical studies show that the two emitters have excellent 

optical and electron transfer properties. The emission peaks of the two emitters are 

430 nm and 439 nm with 87.5% and 68.6% fluorescence quantum yields in 

chloroform, respectively. The emitters both have good thermal stability (Td>330 oC, 

Tg>160 oC). Electrochemical Redox properties of the emitters were measured by 

cyclic voltammetry, and the highest occupied molecular orbital and  the lowest 

unoccupied molecular orbital levels are in good agreement with the results of 

theoretical calculations. Additionally, non-doped blue organic light-emitting diodes 

with these emitters have been achieved with the Commission International de 

l’Éclairage (x,y) coordinates of (0.17, 0.11) and (0.16, 0.15) respectively, which are 

very close to the National Television System Committee standard blue. Remarkably, 

the performance of device A (2,7-bis(9-benzyl-9H-carbazol-2-yl) pyrene) offers 

balanced performance and without any significant disadvantages. 

Keywords: blue emitter, electroluminescent devices, pyrene, carbazole, oxadiazole 
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1. Introduction 

Organic light-emitting diodes (OLEDs) have been developed rapidly due to the 

advantages of the low drive voltage, high luminance and high efficiency [1-5]. Red, 

green and blue light plays a very important role in the full-color display, as they are 

the three primary colors. To date, green and red OLEDs materials have been widely 

reported [6-15]. Due to the low energy consumption lighting, white OLEDs materials 

have also been developed rapidly [16-22]. In comparison with other shades of OLED 

materials, it is difficult to obtain high-efficient blue or deep blue OLEDs because of 

the necessary wide band gaps. Hence, it is always a large challenge to design and 

achieve blue OLEDs. Based on these requirements, recently, the development speed 

of blue OLEDs is also very fast and many different types of blue OLEDs have been 

reported. Carbazole and its derivatives have been widely used as good hole-transport 

materials in the preparation of blue OLEDs [23-28]. Fluorene and its derivatives can 

be used as efficient blue emitters in the preparation of blue OLEDs [23, 28-35]. 

Moreover, chrysene derivatives [36], anthracene derivatives [37-39], triphenylamine 

derivatives [40], naphthalene derivatives [41,42] and other simple polymers [43-46] 

have also been used in OLEDs. Apart from these organic molecules, some metal 

complexes can be also used in OLEDs. Florian [47], Wong [48], Adachi [49] amongst 

other researchers have succeeded in using iridium (III) complexes to prepare blue 

OLEDs. Moreover, some other transition-metal complexes have also been successful 

in OLED applications [50].  

Compared with other conjugated aromatic compounds, the pyrene functional group 

offers a high quantum yield, excellent electron mobility and hole-injection ability. 

However, pyrene itself has a strong tendency towards crystallization. Due to the π-π 

stack forming the excited molecule, its fluorescence emission may be red-shifted over 
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480 nm and with pyrene derived molecules it is difficult to form a stable amorphous 

thin film, which makes pyrene itself unsuitable for blue OLEDs [51,52]. Therefore, it 

is imperative to modify pyrene structures with some specific functional groups.  Rao 

and his coworkers have successfully appended an electron transport group to blue 

emitting pyrene derivatives. But the CIEy of these compounds are over 0.2, and the 

thermal stability of these compounds are not good [53]. Mullen and his coworkers 

successfully prepared a dark blue emitter with pyrene and carbazole units, but the 

brightness of corresponding OLED is low (<1000 cd·m-2) [24]. Tao and his coworkers 

also prepared pyrene derivatives with 4-(2,2-diphenyl-vinyl)phenyl group [54]. The 

performances of combined devices are good, but they are not deep blue OLEDs. 

Similarly, other researchers also designed and developed some pyrene derivatives as 

blue OLEDs materials [55-58]. These obtained pyrene emitters have their own 

particular characteristics, but more or less have their disadvantages, such as either 

larger CIEy, lower brightness or emitting violet light. Additionally, hole-transfer and 

electron-injection properties of emitters are two important parameters for OLEDs 

materials.  

Based on the current case, the aim of our work is to achieve excellent blue emitters 

with hole-transfer or electron-injection groups. Hence, we designed and synthesized 

two novel pyrene emitters with 9-benzyl-9-H-carbazole (hole-transfer group) and 2,5-

diphenyl-1,3,4-oxadiazole (electron-injection group), respectively. The test results of 

photophysical and electroluminescence properties display that the two compounds as 

emitters of OLEDs emit blue light. Noticeably, the device based on 2,7-bis(9-benzyl-

9H-carbazol-2-yl)pyrene (BCP) emitter has good properties including higher 

brightness, pure blue light and good stability. 

2. Experimental 
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2.1 Materials 

Unless otherwise stated, all chemical reagents were obtained from commercial 

suppliers and were used without further purification. The following reagents:  

Pd(dppf)Cl2, bis(pinacolato)diboron, N-bromosuccinimide, phosphoryl chloride, 

Pd(PPh3)4, 4-bromobenzoyl chloride, phenylhydrazine, N-benzylcarbazole and 1,6-

dibromopyrene were all purchased from Aldrich (Steinheim, Germany).  

2.2 Characterization 

 1H NMR and 13C NMR were measured on a Bruker ARX400 spectrometer with 

chemical shifts reported as ppm (TMS as an internal standard). The UV-Vis 

absorption and fluorescence emission spectra were taken on a HITACHI UH5300 and 

F-4600 spectrophotometers, respectively. The excitation and emission slit widths were 

both 5.0 nm. High-resolution mass spectra (HRMS) were acquired on an Agilent 6510 

Q-TOF LC/MS instrument (Agilent Technologies, Palo Alto, CA) equipped with an 

electrospray ionization (ESI) source. IR-spectroscopy measurements were performed 

on a FTIR8400S spectrophotometer, using KBr pellets. Elemental analyses were 

measured on a EuroVector EA3000 elemental analyzer. The glass transition 

temperatures of compounds were determined by DSC using a DSC-Q10 instrument 

under a nitrogen atmosphere. The decomposition temperature corresponding to 5 % 

weight loss was detected using a Perkine Elmer Pyris 1 TGA thermal analyzer. The 

melting points of compounds were recorded on a WRS-3 instrument with a 3 °C/min 

heating rate. Cyclic voltammetry (CV) measurements were determined on a three-

electrode AUTOLAB (model PGSTAT30) workstation in a solution of Bu4NClO4 

(0.1 M) in acetonitrile at a scan rate of 50 mV/s at room temperature. 

2.3 Device fabrication 
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The multilayer OLEDs were fabricated by vacuum-deposition method. Organic 

layers were fabricated by high-vacuum (5×104 Pa) thermal evaporation onto a glass (3 

cm×3 cm) substrate percolated with an ITO layer, which was used as anode. The hole-

transfer layer (HTL) was poly(3,4-ethylenedioxythiophene):poly(styrenesulfonate) 

(PEDOT: PSS). The electron-blocking layer was 4,4-bis(N-carbazolyl)-1,10-biphenyl 

(CBP). The emitting layer was BOP and BCP, respectively. The electron-transport 

layer (ETL) was 1,3,5-tris(N-phbenylbenzimidazol-2-yl) benzene (TBPI). The 

cathode was LiF/Al. All organic layers were sequentially deposited. Thermal 

deposition rates for organic materials, LiF and Al were 0.5 Å·s-1, 0.5·Å s-1and 1.0 Å·s-

1, respectively. The active areas of these devices were 9 mm2. The electroluminescent 

spectra were measured on a Hitachi MPF-4 fluorescence spectrometer. The voltage-

current density characteristics of OLEDs were recorded on Keithley 2400 Source 

Meter. The characterization of luminance-voltage was measured with a 3645 DC 

power supply combined with a 1980 A spot photometer and was recorded 

simultaneously. All measurements were done at room temperature. 

2.4 Synthesis procedures of BCP and BOP 

Compounds of 9-benzyl-3-(4,4,5,5-tetramethyl-1,3,2-dioxaborolan-2-yl)-9H-

carbazole and 2-phenyl-5-(4-(4,4,5,5-tetramethyl-1,3,2-dioxaborolan-2-yl)phenyl)-

1,3,4-oxadiazole were prepared according to the previous reported works [59-61].  

2.4.1 2,7-bis(9-benzyl-9H-carbazol-2-yl)pyrene (BCP) 

A mixture with 1,6-dibromopyrene (0.9 g, 2.5 mmol), 9-benzyl-3-(4,4,5,5-

tetramethyl-1,3,2-dioxaborolan-2-yl)-9H-carbazole (1.92 g, 5.0 mmol) in dioxane 

(50.0 mL) and  2.0 M K2CO3 (10.0 mL) was stirred for 30 min at room temperature 

under nitrogen atmosphere. Then, Pd(PPh3)4 (0.1 g) catalyst was quickly added to the 

suspension and heated to 110 oC for 48 h under nitrogen atmosphere. The reaction 
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mixture was cooled to room temperature, poured into the ice water (200 mL), filtered 

and then purified by column chromatography on silica gel with dichloromethane 

/petroleum ether (1/1, v/v) as the eluant to afford BCP  as faint yellow solids  (1.149g 

64.5 %), m.p. 275-277 °C. 1H NMR (CDCl3, 400 MHz) δ 8.42 (s, 2H), 8.34-8.31 (d, 

J=12.0 Hz, 2H), 8.26-8.22 (m, 4H), 8.19-8.06 (m, 6H), 7.76-7.73 (t, J=6.0, 6.0 Hz, 

2H), 7.67-7.59 (t, J=8.0, 8.0 Hz, 2H) , 7.56-7.45 (m, 4H), 7.36-7.04 (m, 10H), 5.65 (s, 

4H). 13C NMR (CDCl3, 100 MHz) δ 141.21, 140.03, 138.56, 137.18, 132.50, 130.23, 

128.87, 128.33, 127.57, 126.54, 126.12, 125.42, 123.24, 122.39, 120.56 , 119.44, 

108.70, 46.83. IR (KBr, υcm-1):(arene C-H) 3083, 3030; (aliphatic C-H) 2920, 2856; 

(C=C, Ar) 1625, 1601; (C-N, Ar) 1477, 1466. Element Analysis for C54H36N2 (Mol. 

Wt.: 712.90) calcd.: C, 90.98; H, 5.09; found: C 91.12; H 4.98. HRMS-ESI for 

C54H36N2 (m/z) 713.53 [M+1]. 

2.4.2 2,7-bis(4-(5-phenyl-1,3,4-oxadiazol-2-yl)phenyl)pyrene (BOP) 

 The BOP was synthezied according to the above method. The crude produce was 

purified by column chromatography on silica gel with ethyl acetate/dichloromethane 

(1/12, v/v) as the eluant to afford BOP as a pale fawn solid (0.905 g 56.3 %), m.p. 

285-287 °C, respectively. 1H NMR (CDCl3, 400 MHz) δ 8.50 (d, J=6.4 Hz, 2H), 8.41 

(d, J=4.8, 2H), 8.39-8.25 (m, 8H), 8.14 (d, J=12.0 Hz, 2H), 8.03 (d, J=8.0 Hz, 2H), 

7.89 (d, J=8.0 Hz, 4H), 7.62 (m, 6H). 13C NMR (CDCl3, 100 MHz) δ 164.71, 135.34, 

131.77, 129.08, 127.00, 126.06, 125.97, 123.89, 84.25, 25.03. IR (KBr, υcm-1): (arene 

C-H) 3043; (C=C, Ar) 1612, 1630; (C=N) 1546; (C-O-C) 1078, 1296. Element 

Analysis for C44H26N4O2 (Mol. Wt.: 642.72) calcd.: C, 82.23; H, 4.08; N, 8.72; found: 

C, 82.48; H, 4.51; N, 8.64; HRMS-ESI for C44H26N4O2 (m/z): 643.48 [M+1]. 

3. Results and discussion 

3.1 Synthesis and photophysical properties of BCP and BOP 



M
ANUSCRIP

T

 

ACCEPTE
D

ACCEPTED MANUSCRIPT

 

7 

 

The synthetic routes used to prepare blue emitters BCP and BOP were showed in 

Scheme 1. The two compounds also were synthesized by Suzuki coupling reaction 

between 1, 6-dibromopyrene and carbazole boric acid ester or oxadiazoles boric acid 

ester in the presence of palladium catalyst with 64.5 % and 56.3 % yields, respectively 

[59-61]. The structures of BCP and BOP were characterized and verified by 1H NMR, 

13C NMR, high resolution mass (HRMS), IR-spectroscopy and elemental analysis 

(EA). Due to larger rigid conjugated structures of BCP and BOP, they have poor 

solubility in routine organic solvents, for example ethyl acetate, acetone, ethanol, 

methanol, diethyl ether, etc.  

The photophysical properties of BCP and BOP were studied by UV-Vis absorption 

and fluorescence emission techniques. Fig. 1 gives the absorption and emission 

spectra of BCP and BOP in CHCl3. As can be seen from Fig. 1, BOP and BCP have 

similar absorption and emission peaks, and the peaks are very close. The λmax of 

absorption peaks of BCP and BOP are 370 nm and 372 nm, respectively. 

Accordingly, the emission peaks of BCP and BOP are 430 nm and 435 nm, 

respectively. The energy gaps (Eg) of BCP and BOP were calculated by the empirical 

equation [Eg=1240/λabs]. The energy gaps (Eg) of BCP and BOP are 3.33 eV and 3.35 

eV, which are very close to the theoretical calculation results 3.34 eV and 3.33 eV, 

respectively. Using quinine sulfate in 0.10 M sulfuric acid as the reference, the 

fluorescent quantum yields (Φ) of BCP and BOP in CHCl3 are 87.5 % and 68.6 % in 

chloroform, respectively. These data indicate that the two compounds can be used as 

potential blue emitting materials because they have suitable blue emitting range.  

The solvent effects of BCP and BOP were tested by the fluorescence instrument in 

different organic solvents (Table S1). As can be seen from the Table S1, the 

maximum emission wavelengths (λem) of BCP and BOP are both gradually red-shifted 
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with increase of solvent polarity. The result may be explained by the following 

reason: the polarity of excited state always is smaller than the ground state because of 

the π-π* transition of molecules. Thus, the interaction between the excited state and 

polar solvent is larger than the interaction between ground state and polar solvent. 

That is to say, the energy difference between the ground state and excited state 

becomes small with the increase of solvent polarity. So the emission peaks of BCP 

and BOP are red-shifted.  

3.2 Thermal properties of BCP and BOP 

Good thermal stability of emitter materials plays very important in device 

application. The thermal stabilities of BOP and BCP were evaluated by thermal 

gravimetric analysis (TGA) with a 5.0 °C/min heating rate and differential scanning 

calorimetry (DSC) under nitrogen atmosphere. Due to their large molecular masses 

and rigid structures, both compounds showed good thermal stability. The 

decomposition temperatures (Td, 5 % weight loss) of BOP and BCP are 353 ºC and 

333 ºC with the glass transition temperatures 164 ºC and 170 ºC (Fig. 2), respectively. 

These results indicate that BOP and BCP have good stable thermal properties and 

high glass transition temperatures, which will contribute to the device performance 

(longevity).  

3.3 Electrochemical properties 

Using cyclic voltammetry (CV) with a saturated calomel electrode as the reference 

electrode, we studied the electrochemical properties of BCP and BOP. Under N2 

atmosphere, using 0.10 M tetrabutylammonium perchlorate as the supporting 

electrolyte, the electrochemical properties of BCP and BOP were studied. Fig. S1 and 

Fig. S2 give the electrochemical properties of BOP and BCP, respectively. There is 

an oxide peak and a reversible reduction peak in the entire electrochemical window of 
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BOP (Fig. S1). The initial oxidation potential is around +0.59 eV, which comes from 

the oxidation of the pyrene core and the reversible reduction. And, the reversible 

reduction peak is around -1.11 eV, which results from electron injection into the 

vacant p-orbital of BOP. That is to say, the electron distribution of LUMO is mainly 

on 2,5-diphenyl-1,3,4-oxadiazole moiety, which indicates that BOP can be used as a 

good electron-transfer material. The HOMO energy level is -5.33 eV, which can be 

calculated by the empirical equation [HOMO=-(Eox+4.5+0.24) eV]. The HOMO 

level indicates that the electron distribution is mainly in the pyrene moiety. The 

energy gap (Eg) of BOP is 3.33 eV, which is obtained by the equation [Eg=1240/λabs]. 

The LUMO energy level is -2.00 eV, which is calculated by the HOMO and Eg. 

Similarly, the HOMO, LUMO level and Eg of BCP were obtained by the same 

calculation methods (Fig. S2). The HOMO, LUMO and Eg of BCP are -5.35 eV, -

2.02 eV and 3.33 eV, respectively. The electron distributions of HOMO and LUMO 

for BCP are mainly on the pyrene core. These results indicate that the emission of 

BCP mainly comes from the excited state of pyrene core.  

3.4 Theoretical calculation 

Theoretical calculations have been widely used in many research fields and can 

effectively provide a reasonable qualitative indication of the excitation and emission 

properties of a conjugated molecule [62, 63]. Using density functional theory (DFT), 

the geometries and electron density distributions of the HOMO and LUMO energy 

levels of BOP and BCP. Under the DFT/B3LYP/6-31G (d, p) level with using 

Gaussian 09 software the geometry in the ground state was optimized. The geometries 

and electron density distributions of the HOMO and LUMO energy levels of BOP and 

BCP were calculated by density functional theory (DFT) in Fig. 3. As can be seen 

from Fig. 3, the HOMO level of BOP is -5.33 eV and the electron density is mainly 
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distributed on the pyrene moiety. The LUMO level is -2.00 eV and electron density is 

mainly distributed on the oxadiazole moiety. The HOMO and LUMO of BCP is -5.33 

eV and -1.99 eV, respectively. But the electron distributions of HOMO and LUMO 

for BCP are both mainly on the pyrene moiety. In addition, complete localization of 

the HOMO and LUMO is essential for efficient hole and electron transport and the 

prevention of reverse energy transfer as well [64]. 

3.5 Electroluminescence Devices 

In order to evaluate BOP and BCP as potential luminescent materials in OLEDs, 

multilayers non-doped OLEDs with configurations of A:ITO/PEDOT:PSS(50 

nm)/BCP(30 nm)/CBP(5 nm)/TPBI(30 nm)/LiF(1 nm)/Al(200 nm) and B:ITO/ 

PEDOT:PSS(50 nm)/BOP(30 nm)/CBP(5 nm)/TPBI(30 nm)/LiF(1 nm)/Al(200 nm) 

were fabricated. The electroluminescence (EL) spectra of device A and B are 

displayed in Fig. 4 and Fig. S3. The emission peaks of BCP and BOP are 450 nm and 

440 nm respectively. According to the EL spectra, the electroluminescence 

chromaticity coordinates (CIE) of BCP and BOP are (0.17, 0.11) and (0.16, 0.15), 

respectively. The results suggest that the two compounds afford deep blue coloured 

OLEDs materials and the diode constructed using BCP is much deeper blue than that 

using BOP (Fig. 5). From the EL spectra it can also be found that the emission peaks 

of BCP and BOP are red-shifted about 10 nm and 15 nm in contrast with their PL 

emission peaks in CHCl3. Along with the increase of the voltage, there are almost no 

changes of the EL emission wavelengths of device A and device B, which indicates 

that both device A and device B are very stable. 

The voltage-luminance and voltage-current density curves of device A and device 

B are depicted in the Fig. 6(a) and (b), respectively. While the current density-

efficiency and luminance-power efficiency curves are listed in Fig. S4-S5. Based on 
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these experiment results, we can find the turn-on voltage, maximum luminance, 

maximum current efficiency and maximum power efficiency of device A are 4.6 V, 

1975 cd·m-2 (at 9.5 V), 1.08 cd A-1(at 6.2 V) and 0.628 lm·W-1(at 5.2 V), respectively. 

Similarly, the turn-on voltage, maximum luminance, maximum current efficiency and 

maximum power efficiency of Device B are 4.8 V, 1282 cd·m-2 (at 9.5 V), 0.73 cd·A-

1(at 7.0 V) and 0.328 lm·W-1(at 7.0 V), respectively. Compared to the 

electroluminescence data of device A with device B, the performance of device A is 

superior to device B. The experimental data indicate that all aspects of device A are 

well suited with the application of deep blue OLEDs. It should be pointed out that the 

EL performances were obtained in non-optimized test devices under ordinary 

laboratory conditions. We believe that the performance of devices will be improved 

by optimizing the structures of devices, the layer thickness and process conditions.  

4. Conclusion 

In summary, we have successfully synthesized and characterized two deep blue-

light emitters (BCP and BOP) by Suzuki coupling reactions. The advantages of 

photophysical and electroluminescence properties of the two emitters are as follows: 

1) they are both new OLEDs materials with good π-electron delocalization and 

conjugation features; 2) The CIEs of BCP and BOP are (0.17, 0.11) and (0.16, 0.15), 

which indicates that both of them are deep blue-light emitting materials; 3) They are 

comprised of luminophor (pyrene) and electron-transfer group (oxadiazole) or hole-

transport group (carbazole), respectively; 4) Owing to the rigid structures, they have 

good thermal stabilities; 5) The performance of device A is balanced and without 

obvious disadvantages. In other words, the emitter with hole-transfer group (BCP) is 

better than with electron-transport group (BOP) in device application. With the 



M
ANUSCRIP

T

 

ACCEPTE
D

ACCEPTED MANUSCRIPT

 

12 

 

optimization of structures and layers thickness, the properties of devices will be 

improved and may meet commercial requirements. 
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Appendix. Supplementary data 

  Other fluorescence spectroscopy (PDF) associated with this article can be found in 

the online version, at doi: 
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The figures and scheme captions 

Scheme 1. The synthesis routes of BCP and BOP. 

Fig. 1 The UV-vis absorption and fluorescence emission spectra of BCP and BOP in 

CHCl3. 

Fig. 2 TGA thermogram of BCP and BOP with a heating rate of 5 oC/min under 

nitrogen atmosphere, respectively. 

Fig. 3 Molecular orbital surfaces of the HOMO and LUMO for BCP and BOP. 

Fig. 4 The electroluminescence spectra of BCP and BOP in device A, 

(ITO/PEDOT:PSS/BCP/CBP/TPB/LiF/Al). 

Fig. 5 The electroluminescence (CIE) chromaticity coordinates of BCP and BOP. 

Fig. 6 (a) Plots of voltage versus luminance for blue-light emitting devices A and B,  

(b) Plots of voltage versus current density for blue-light emitting devices A and B, 

(ITO/PEDOT:PSS/BCP/CBP/TPB/LiF/Al; ITO/PEDOT:PSS/BCP/CBP/TPB/LiF/Al). 
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Fig. 2 
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Fig. 3 
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Fig. 4 
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Fig. 5 
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Fig. 6 
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Highlights 

Two novel blue emitting OLED materials were designed and synthesized. 

These emitters exhibit good thermal stability and electron transfer properties.  

  The device with BCP emitter has good optical and electrical characteristics.  


