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Synopsis 

Three carbazole-based fluorescent molecules were successfully synthesized. 

These luminogens showed color-tunable solid-state fluorescence, high thermal 

stability, typical aggregation-induced emission, and reversible 

mechanofluorochromism characteristics. 
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ABSTRACT 

Three new carbazole-based fluorescent molecules 1-3 functionalized with 

tetraphenylethene have been successfully synthesized, and these compounds have 

high thermal stability, and they exhibited different fluorescence in solid states with 

the superior luminescence quantum yields of 99.04% (1), 98.90% (2) and 39.83% (3). 

Their aggregation-induced behaviors were explored by the study of 

photoluminescence spectroscopy. The results showed that luminogens 1-3 exhibited 

remarkable aggregation-induced emission effect. Furthermore, their distinct 

mechanical stimulus-responsive fluorescence characteristics were also surveyed by 

solid-state photoluminescence spectroscopy. Interestingly, the various emitting 

colors of these luminogens could be changed into the same green, and the 

repeatabilities of their mechanochromic luminescence behaviors were outstanding, 
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and the powder X-ray diffraction results indicated that the reversible conversion 

from a crystalline to an amorphous state was responsible for the obvious 

mechanofluorochromism phenomena of compounds 1-3. This work will be valuable 

for the exploitation of mechanical-force sensors with typical aggregation-induced 

emission feature. 

Keywords: Carbazole; Tetraphenylethene; High thermal stability; Different 

fluorescence; Aggregation-induced emission; Mechanofluorochromism 

 

1. Introduction 

Organic luminescence materials exhibiting bright fluorescence in the solid state 

have received considerable attention in recent decades in view of their promising 

applications in optoelectronic devices, sensors and display devices [1-6]. In 

particular, mechanofluorochromic functionalized materials, displaying different  

luminescent colors induced by mechanical force, have been attracting continuing 

interests from researchers because of their broad applications in the fields of pressure 

sensors, data storage and rewritable media [7-17]. Generally, the molecular packing 

of mechanochromic luminescence molecules can be adjusted by various 

intermolecular interactions such as π-π interactions, hydrogen bonding and halogen 

bonding, and no chemical structure damage appear in mechanofluorochromic 

luminogens during their reversible luminescence change processes [18-24]. To date, 

numerous mechanical stimulus-responsive materials have been reported. However, 

the types of the corresponding mechanochromic materials are limited, and examples 
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of high-efficiency mechanochromic smart fluorescent materials with obvious color  

change before and after stimulating are still inadequate. Indeed, a lot of effort has  

been made to exploit high-contrast mechanofluorochromic materials. There is no 

doubt that strong solid-state emission is a crucial factor for the development of 

mechanochromism materials with clear color contrast. Unfortunately, the majority of 

traditional emissive materials exhibit very bright luminescence in their dilute 

solutions, but the bright luminescence is often weakened or quenched at high 

concentrations, a well-known phenomenon referred to as aggregation-caused 

quenching (ACQ) [25], and the ACQ effect largely hinders the exploitation of 

high-performance mechanical force-responsive materials. Excitingly, Tang et al. 

discovered the aggregation-induced emission (AIE) phenomenon [26], which is 

commonly caused by the restriction of intramolecular motions[27,28]. Luminophors 

with AIE effect can overcome ACQ, and achieve strong solid-state emission. Indeed, 

the exploitation of AIE-active fluorogenic molecules has attracted intense research 

interest due to their potential applications in the fields of biomedical imaging, 

sensors and organic light emitting diode [29-37]. For example, AIE-active fluorogens 

can be designed to exhibit very weak fluorescence in aqueous media, and their 

fluorescence will be turned on upon interacting with target analytes, which is 

extremely significative for biosensing and imaging applications of these fluorogenic 

molecules with AIE feature. Until now, luminogens simultaneously possessing AIE 

and reversible mechanochromism characteristics are still scarce, not to mention 

highly thermal stable luminogens with these interesting properties. Therefore, the 
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discovery of AIE-active mechanochromic highly thermal stable compounds is a 

significative and challenging research topic, and it deserves great attention.  

Carbazole-based derivatives are very valuable candidates in the fields of 

photoelectronic devices and sensors [38-45]. Nevertheless, the notorious ACQ effect 

limits the rapid development of these materials with carbazole skeletons. Thus, it is 

also a very important and urgent challenge to synthesize AIE-active luminogens 

based on a carbazole scaffold structure. In this work, we designed and prepared three 

novel carbazole-based tetraphenylethene derivatives with different substituents 

(Chart 1). Aggregation-induced behavior and mechanofluorochromic feature of these 

highly emissive dyes were systematically investigated by photoluminescence 

spectroscopy, dynamic light scattering and powder X-ray diffraction. Indeed, all 

these different solid-state light-emitting compounds showed superior thermal 

stability, outstanding AIE and reversible mechanochromic fluorescence 

characteristics.  

 

Chart 1. The molecular structures of carbazole-based compounds 1-3. 

2. Materials and methods 

2.1. Experimental 
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General: All manipulations were carried out under an argon atmosphere by using 

standard Schlenk techniques, unless otherwise stated. The starting materials 

3,6-dibromo-9H-carbazole, (4-(trifluoromethyl)phenyl)boronic acid, phenylboronic 

acid, (4-methoxyphenyl)boronic acid, n-(4-iodophenyl)acetamide, nitrobenzene and 

tetrabutylammonium bromide (TBAB) purchased from J&K Chemical were used as 

received. All other starting materials and reagents were obtained as analytical-grade 

from commercial suppliers and used without further purification. Compounds 1-1 

[46], 1-2 [46], 1-3 [46] and 1-4 [47] were prepared by procedures described in the 

corresponding literatures. 1H NMR (400 MHz) and 13C NMR (100 MHz) spectra 

were collected on American Varian Mercury Plus 400 spectrometer (400 MHz). 1H 

NMR spectra were reported as followed: chemical shift in ppm (δ) relative to the 

chemical shift of TMS at 0.00 ppm, integration, multiplicities (s = singlet, d = 

doublet, t = triplet, m = multiplet), and coupling constant (Hz). 13C NMR chemical 

shifts reported in ppm (δ) relative to the central line of triplet for CDCl3 at 77 ppm, 

Mass spectra were obtained on a Bruker AmaZon SL Ion Trap Mass spectrometer. 

Elemental analyses (C, H, N) were carried out with a PE CHN 2400 analyzer. The 

absorption spectra were measured on an Agilent 8453 UV/Vis spectrophotometer. 

Fluorescence spectra were recorded on a Hitachi-F-4600 fluorescence 

spectrophotometer. XRD studies were recorded on a Shimadzu XRD-6000 

diffractometer using Ni-filtered and graphite-monochromated Cu Kα radiation (λ = 

1.54 Å, 40 kV, 30 mA). The N, N-dimethyl formamide (DMF)/water mixtures with 

various water fractions were prepared by slowly adding ultra-pure water into the 
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DMF solution of samples. Absolute fluorescence quantum yields and fluorescence 

lifetimes were measured by Edinburgh FLS1000 spectrometer. Dynamic light 

scattering (DLS) measurements were performed by NanoBrook 90Plus (Brookhaven 

Instruments). Column chromatographic separations were carried out on silica gel 

(200-300 mesh). TLC was performed by using commercially prepared 100-400 mesh 

silica gel plates (GF254) and visualization was effected at 254 nm.  

2.2. Synthesis 

2.2.1. Synthesis of compounds 1, 2 and 3. Into a 50 mL, two-necked, round-bottom 

flask were placed 1-4 (1234 mg, 3.0 mmol), Pd2(dba)3 (57.4 mg, 0.1 mmol), and 

t-BuONa (384.4 mg, 4.0 mmol). The flask was evacuated under a vacuum and then 

flushed with dry nitrogen three times. Toluene (30 ml), 1-1 (546.5 mg, 1.0 mmol) or 

1-2 (410.5 mg, 1.0 mmol) or 1-3 (470.6 mg, 1.0 mmol), and toluene solution of 

(t-Bu)3P (2 ml) were injected into the flask, and the mixture was refluxed for 48 h 

and then cooled to room temperature. The solution was poured into water (60 ml) 

and extracted with dichloromethane three times. The combined organic layers were 

washed with brine, dried (Na2SO4), and concentrated in vacuo. In the end, the 

residues were purified by silica-gel column chromatography, affording the expected  

solid product 1 (white), 2 (yellowish) or 3 (yellow) in a yield of 80%, 75% or 76%, 

respectively. 1: 1H NMR (400 MHz, CDCl3): δ (ppm) = 8.42 (s, 2H), 7.83 (d, J = 8 

Hz, 4H), 7.74-7.68 (m, 6H), 7.50 (d, J = 8 Hz, 2H), 7.38 (d, J = 8 Hz, 2H), 7.20-7.03 

(m, 32H), 6.96-6.88 (m, 8H). 13C NMR (100.6 MHz, CDCl3): δ (ppm) = 147.2, 

145.4, 145.3, 144.0, 143.6, 143.5, 141.6, 140.9, 140.5, 139.0, 132.4, 132.1, 131.4, 
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131.3, 130.6, 129.2, 128.9, 128.6, 128.2, 127.7, 127.7, 127.6, 127.5, 126.5, 126.4, 

125.8, 124.0, 123.8, 123.7, 123.1, 119.1, 110.6. ESI-MS (m/z): 1207.3 [M]+. Anal. 

Calcd. for C84H56F6N2: C, 83.56; H, 4.68; N, 2.32. Found: C, 83.49; H, 4.76; N, 2.26. 

2: 1H NMR (400 MHz, CDCl3): δ (ppm) = 8.39 (s, 2H), 7.74-7.67 (m, 6H), 7.48 (t, J 

= 8 Hz, 6H), 7.41-7.33 (m, 4H), 7.19-7.03 (m, 32H), 6.95-6.87 (m, 8H). 13C NMR 

(100.6 MHz, CDCl3): δ (ppm) = 146.8, 145.4, 144.0, 143.7, 143.5, 142.0, 141.0, 

140.8, 140.6, 138.8, 133.5, 132.3, 131.4, 128.8, 127.7, 127.6, 127.5, 127.3, 126.6, 

126.5, 126.4, 126.4, 125.6, 124.1, 123.9, 123.5, 118.8, 110.2. ESI-MS (m/z): 1071.4 

[M] +. Anal. Calcd. for C82H58N2: C, 91.93; H, 5.46; N, 2.61. Found: C, 91.98; H, 

5.50; N, 2.54. 3: 1H NMR (400 MHz, CDCl3): δ (ppm) = 8.33 (d, J = 4 Hz, 2H), 

7.67-7.61 (m, 6H), 7.46-7.38 (m, 4H), 7.18-7.02 (m, 36H), 6.95-6.87 (m, 8H), 3.88 

(s, 6H). 13C NMR (100.6 MHz, CDCl3): δ (ppm) = 158.7, 146.7, 145.4, 144.0, 143.7, 

143.5, 140.8, 140.7, 140.6, 138.8, 134.7, 133.1, 132.3, 131.4, 128.3, 127.7, 127.6, 

127.5, 126.5, 126.4, 126.4, 125.3, 124.2, 123.9, 123.5, 118.4, 114.3, 110.2, 55.4. 

ESI-MS (m/z): 1131.4 [M]+. Anal. Calcd. for C84H62N2O2: C, 89.17; H, 5.52; N, 2.48. 

Found: C, 89.10; H, 5.61; N, 2.43. 
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 Scheme 1. Synthesis routes of compounds 1-3. 

3. Results and discussion 

3.1. Synthesis 

As shown in Scheme 1, the carbazole-based tetraphenylethene derivatives with 

different substituents were prepared in 80%, 75% or 76% yield respectively 
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according to the substitution reaction of intermediate product 1-1, 1-2 or 1-3 and 

intermediate product 1-4. 

3.2. Aggregation-induced emission (AIE) characteristics of compounds 1-3 

To investigate the AIE behaviors of compounds 1-3, the UV-Vis absorption 

spectra of luminogens 1-3 (20 µM) in DMF-H2O mixtures with different water 

fractions (fw) were studied initially (Supporting information: Figs. S1-S3). Indeed, 

level-off tails in the visible region were observed as the fw increased. This interesting 

phenomenon is commonly associated with the well-known Mie scattering effect, and 

it is the signal of nano-aggregate formation [48]. Next, the photoluminescence (PL) 

spectra of 1-3 (20 µM) in DMF-H2O mixtures with various water contents were 

systematically explored. As can be seen in Fig. 1, luminogens 1-3 are almost 

non-emissive in pure DMF, and the corresponding fluorescence quantum yield is 

1.15% for 1, 0.48% for 2, or 2.03% for 3, respectively. However, when the water 

content in the DMF solution was increased to 30%, a new green emission band was 

observed, with a maximum (λmax) at 505 nm for 1, 507 nm for 2, or 508 nm for 3, 

and a strong green luminescence with the related fluorescence quantum yield up to 

68.01% (1), 67.92% (2) or 59.90% (3) could be observed as the fw value was 

increased to 90%.  
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Fig. 1. PL spectra of the dilute solutions (2.0 × 10-5 mol L-1) of luminogen 1 (a), 

2 (b) or 3 (c) in DMF-H2O mixtures with various water contents (0%-90%). 

Excitation wavelength = 365 nm. The inset shows the corresponding fluorescence 

images of 1 (a), 2 (b) or 3 (c) in pure DMF as well as 90% water fraction under 365 

nm UV light. 

 

Fig. 2. Decay curves of luminogens 1-3 (505 nm for 1, 507 nm for 2 and 3) in 

DMF-water mixtures with 90% volume fraction of water. Concentration：2.0 × 10-5 
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mol L-1. 

 

Fig. 3. Size distribution curves of 1 (a), 2 (b) and 3 (c) in DMF-water mixtures 

with 90% volume fraction of water. Concentration：2.0 × 10-5 mol L-1. 

In addition, as shown in Fig. 2, the emission lifetime of 1, 2 or 3 in 90% water 

fraction is 4.32 ns, 4.41 ns or 4.22 ns, respectively. There is no doubt that water is a 

nonsolvent for luminogens 1-3, and thus an increase in the water content of mixed 

solvent caused the aggregate formation. In fact, the nano-aggregates obtained were  

characterized by dynamic light scattering (DLS) experiments (Fig. 3). Therefore, the 

bright green fluorescence of 1-3 was attributed to aggregate formation. Clearly, 1-3 

belong to AIE-active luminous molecules. 

3.3. Solid-state fluorescence characteristics and thermal stability of compounds 1-3 

To investigate the solid-state fluorescence behaviors of luminogens 1-3, the 

solid-state PL spectra of 1-3 were studied.  
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Fig. 4. (a) Solid-state PL spectra of compounds 1-3. The fluorescence images of 

luminogens 1-3 under 365 nm UV light: (b) the solid sample of 1; (c) the solid 

sample of 2; (d) the solid sample of 3. 

As evident from Fig. 4, the emission spectrum of 1 with two trifluoromethyl 

groups showed an emission band with λmax at 465 nm, corresponding to a blue 

emission under 365 nm UV light, and 2 showed a broad emission band with λmax at 

490 nm, and it exhibited blue-green fluorescence upon UV illumination at 365 nm. 

However, 3 with two methoxyl groups exhibited green luminescence with a λmax at 

497 nm. On the other hand, to evaluate the thermostability of the compounds 1-3, 

their thermogravimetric analyses (TGA) were carried out. As presented in Fig. 5, 

luminogens 1-3 are thermally stable and possess high onset degradation temperatures 

(Td) ranging from 480 to 540℃. 
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Fig. 5. TGA thermograms of solid samples 1-3. 

3.4. The mechanofluorochromic behaviors of compounds 1-3 

Subsequently, the mechanochromic fluorescence characteristics of compounds 

1-3 were further researched by PL spectroscopy. As shown in Fig. 6, the solid sample 

of 1 showed blue luminescence, and its fluorescence quantum yield (QY) is 99.04%. 

However, upon grinding of the corresponding solid sample using a pestle, a new 

emission peak with λmax at 510 nm was observed, and the strong blue emission was 

converted into the green luminescence (QY = 61.92%). Meanwhile, as shown in Fig. 

S4, the emission lifetime of before or after grinding is 2.52 ns or 2.50 ns, 

respectively. On the other hand, upon treatment of the ground sample with 

dichloromethane solvent, the green-emitting sample could be reverted to its initial 

blue color. Therefore, 1 exhibited obvious and reversible mechanofluorochromic 

behavior. Furthermore, this reversible mechanochromic fluorescence could be 

repeated numerous times without obvious changes by repeated grinding-exposure 

(Fig. S5). The possible mechanism of mechanofluorochromic phenomenon of 1 was 
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examined by powder X-ray diffraction (PXRD) experiment. As can be seen in Fig. 7, 

the XRD pattern of the as-synthesized sample exhibited a lot of sharp diffraction 

peaks, indicative of its crystalline nature. Interestingly, after grinding, the clear and 

sharp reflection peaks vanished, which implied that grinding resulted in the 

transformation from a crystalline to an amorphous state. In contrast, the original 

intense diffraction peaks reappeared after treatment by exposure to  

dichloromethane vapor, suggesting that the crystalline phase was restored. Thus, the 

PXRD measurements indicated that a crystal-to-amorphous phase conversion was 

responsible for the reversible mechanofluorochromism phenomenon of compound 1. 

Consistent with the mechanochromic behavior of 1, as shown in Fig. 8 and Fig. 9, 

compounds 2 and 3 also showed similar mechanochromic fluorescence 

characteristics, and their emission lifetimes of before and after grinding are shown in 

Fig. S6 and Fig. S9. Moreover, the repeatabilities of their mechanofluorochromic 

behaviors were also excellent (Fig. S7 and Fig. S10). In addition, as presented in Fig. 

S8 and Fig. S11, the mechanism of their mechanofluorochromism phenomena was 

also attributed to the switchable morphology changes between the crystalline and 

amorphous states.  
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Fig. 6. (a) Solid-state PL spectra of compound 1 before grinding, after  

grinding, and after treatment with dichloromethane vapor. Excitation wavelength:   

365 nm. Photographic images of 1 under 365 nm UV illumination: (b) the unground 

solid sample. (c) the ground solid sample. (d) the solid sample after treatment with 

dichloromethane vapor. 
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Fig. 7. XRD patterns of compound 1: unground, ground and after treatment 

with dichloromethane vapor. 
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Fig. 8. (a) Solid-state PL spectra of compound 2 before grinding, after grinding, 

and after treatment with dichloromethane vapor. Excitation wavelength: 365 nm. 

Photographic images of 2 under 365 nm UV illumination: (b) the unground solid 

sample. (c) the ground solid sample. (d) the solid sample after treatment with 

dichloromethane vapor. 

 

Fig. 9. (a) Solid-state PL spectra of compound 3 before grinding, after grinding, 

and after treatment with dichloromethane vapor. Excitation wavelength: 365 nm. 

Photographic images of 3 under 365 nm UV illumination: (b) the unground solid 

sample. (c) the ground solid sample. (d) the solid sample after treatment with 

dichloromethane vapor. 
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4. Conclusions 

In summary, three novel carbazole-based tetraphenylethene-containing 

luminogens with different substituents were designed and synthesized to investigate 

their AIE, solid-state fluorescence, thermal stability, and mechanofluorochromic 

characteristics. Noteworthily, compounds 1-3 showed high thermal stability and 

bright solid-state fluorescence with outstanding luminescence quantum yield of 

99.04%, 98.90% or 39.83%, and their solid-state emission could be adjusted by 

various substituents. Furthermore, luminogens 1-3 showed typical AIE effect. In 

addition, 1-3 also exhibited reversible mechanofluorochromism phenomena. Indeed, 

the various solid-state emitting colors of these luminogens could be changed into the 

same green, and the repeatabilities of their mechanochromic fluorescence behaviors 

were excellent. The PXRD results indicated that the reversible conversion from a 

crystalline to an amorphous state was responsible for the reversible 

mechanofluorochromic characteristics of 1-3. This work will be beneficial for the 

exploitation of highly thermally stable mechanical-force sensors with AIE feature. 
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� Three novel carbazole-based tetraphenylethene-containing compounds were 
synthesized. 

� All these compounds showed high thermal stability and strong solid-state 
fluorescence. 

� These luminogens exhibited typical aggregation-induced emission characteristics. 

� These luminogens with different substituents exhibited color-tunable solid-state 
fluorescence. 

� These luminogens exhibited highly reversible mechanofluorochromic behaviors. 

 

 

 

 


