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Abstract: Ozone oxidation of silyl-substituted alkenes,
namely silylalkenes, proceeds in an addition-type manner
to afford a-silylperoxy carbonyl compounds in good to ex-
cellent yields, without the formation of normal ozonolysis
products. Herein the ozone oxidation of chiral alkenylsi-
lanes prepared from alkynes and a newly designed chiral
hydrosilane is reported. The reaction affords silylperoxides
with high diastereoselectivity (up to 94 % d.r.). The silylper-
oxides are convertible into enantioenriched chiral acyloins
in a stereospecific manner.

Stereoselective oxidation of alkenes is one of the most impor-
tant and widely utilized methods in asymmetric synthesis.[1]

However, handling explosive peroxides or highly toxic transi-
tion-metal reagents is a fundamental problem in these reac-
tions. On the other hand, ozone is a prominent oxidant that
can be easily prepared from and is re-convertible to safe and
clean oxygen. Despite this substantial advantage, ozone has
not been applied to the asymmetric oxidation of alkenes, be-
cause the reactions generally involve the cleavage of
a carbon–carbon double bond to afford achiral carbonyl com-
pounds, which is widely known as “ozonolysis” (path a in
Scheme 1).[2]

To this end, we recently found that ozone oxidation of silyl-
substituted alkenes, namely silylalkenes, proceeds in an addi-
tion-type manner to afford a-silylperoxy carbonyl compounds
in good to excellent yields, without the formation of normal
ozonolysis products (path b in Scheme 1).[3, 4] The key step in
this unique oxidation is the migration of the silyl group from
carbon to oxygen in the primary ozonide i, which prevents 1,3-
dipolar cycloelimination, including C�C bond cleavage to form
secondary ozonide ii. The resulting a-silylperoxy carbonyl com-
pounds are easily and efficiently convertible into synthetically
valuable acyloins, 1,2-diketones, 1,2-diols, and so on.[3] The re-

action mechanism clearly suggests that the stereochemistry of
the newly generated a-carbonyl stereogenic center is deter-
mined in the 1,3-dipolar cycloaddition step to form ozonide i.
Thus, we envisioned that asymmetric ozone oxidation would
be realized by attaching the appropriately chosen chiral auxili-
ary to a silylalkene.[5–7] We planned the introduction of a chiral
auxiliary (CA*) on the silyl group to efficiently construct a chiral
environment around the alkene moiety that is easily removed
from the oxidation product (Scheme 2). The details are provid-
ed below.

At the outset, we designed silylalkenes 2 having a chiral
alkoxy moiety on silicon.[8] These silylalkenes were prepared by
the reaction of chlorosilane 1 and a variety of chiral alcohols,
in good to excellent yields (85–98 %), as shown in Scheme 3.
Ozone oxidation of 2 was performed as per our standard pro-
cedure: bubbling about 1.2 v/v % O3/O2 gas in AcOEt at
�78 8C.[3] The reactions of 2 a–c afforded the corresponding a-
silylperoxy ketones 3 a–c in quantitative yields, although the
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Scheme 1. Ozonolysis and addition-type ozone oxidation of alkene.

Scheme 2. Concept of asymmetric ozone oxidation.
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migrating silyl groups were bulky. However, the diastereoselec-
tivity of the reactions, which is our main concern, was poor
(54–64 % d.r.).

Because of these disappointing results, we recognized the
need to redesign the chiral auxiliary. After several attempts, we
found that the novel C2-symmetrical dialkoxysilyl group A is
suitable for this purpose and that it can be easily introduced
into alkynes by hydrosilylation with dialkoxyhydrosilane 5 pre-
pared from a,a,a’,a’-tetraaryl-1,3-dioxolan-4,5-dimethanol
(TADDOL; 4)[9] and R’SiCl2H, in excellent yield (Scheme 4).[10, 11]

Notably, compound 5 is stable under the standard operation
conditions, including purification by silica-gel chromatography.
In particular, 5 aa (R = Ph, R’= Me) has good crystallinity and
hence can be purified by recrystallization.

The hydrosilylation of 5 and 4-octyne in the presence of 1,3-
divinyl-1,1,3,3-tetramethyldisiloxaneplatinum(0)—[Pt(dvds)]—
afforded 6 aa–ca in good yields (83–89 %) with excellent E se-
lectivities (>99 % E) (Scheme 5).[12] Ozone oxidation of silylal-
kenes 6 was performed by the above-mentioned standard pro-
cedure. The reaction of 6 aa afforded the corresponding a-silyl-
peroxy ketone 7 aa in 94 % yield with good diastereoselectivity
(73 % d.r.). The stereochemistry of the newly generated stereo-
genic center of 7 aa was determined to be R by transforming
the compound into a stereochemically defined acyloin 9 a, as
follows.[13] The reaction of 7 aa with P(OMe)3 in tBuOH proceed-
ed to afford O-silylated acyloin 8 aa in 69 % yield.[14, 15] The reac-
tion of 8 aa with tetra-n-butylammonium fluoride (TBAF) af-
forded (R)-9 a in 60 % yield without loss of enantiopurity along
with a good deal of TADDOL 4 a.[16, 17]

With this promising result in hand, we focused on the influ-
ence of the structure of the dialkoxysilyl group A on the ste-
reoselectivity. The stereoselectivity was slightly improved by
the use of 5 ba (R = 3,5-xylyl) as the dialkoxyhydrosilane: the
oxidation of 6 ba afforded (R)-7 ba in 76 % d.r. The highest ste-
reoselectivity was obtained by the use of 5 bb having bulky R
and R’ groups: the oxidation of 6 bb afforded (R)-7 bb in 94 %
d.r. Interestingly, the dialkoxysilane with a benzyl group as R
provided the opposite stereoselectivity: the oxidation of 6 ca
afforded (S)-7 ca in 91 % d.r.

To gain insight into the observed stereoselectivity, we com-
puted the transition states for the 1,3-dipolar cycloaddition of
ozone with a simplified silylalkene 6 d at the RHF/6-31G(d)
level of theory, in which the conformation of 5 aa in the crys-
talline state, revealed by the X-ray crystallographic analysis,
was used for the initial conformation of the dialkoxysilyl group
of 6 d (Figure 1).[18, 19] Assuming that the ozone accesses the
alkene moiety from the opposite side of the methyl group on
silicon to avoid steric repulsion, we estimated four types of
transition states TS1–TS4 with differences in the Re/Si face se-
lection and endo/exo modes in 1,3-dipolar cycloaddition. The
calculation results showed that TS1, in which ozone reacts
with the alkene moiety from the Re-face in the endo-cyclization
mode to form a silylperoxide with R configuration at the car-
bonyl a-position, is the most favorable. Although the calcula-
tion level is too low to discuss the result in detail, the models
seem to adequately show the effect of the asymmetric envi-
ronment created by the chiral silyl group A.[20]

The present asymmetric ozone oxidation has a broad sub-
strate scope. As shown in Scheme 6, the ozone oxidation of 3-
hexyne-, 2-butyne-1,4-diol-, and 6-phenyl-2-hexyn-1-ol-derived
silylalkenes (6 e–6 g, respectively) afforded the corresponding
a-silylperoxy ketones in 90 (78% d.r.), 85 (91 % d.r.), and 86 %
yield (89 % d.r.), respectively.[21–23] Moreover, a similar reaction
of the cyclododecyne-derived cyclic silylalkene 6 h proceeded
with good stereoselectivity (82 % d.r.).

Scheme 3. Preparation and ozone oxidation of chiral silylalkene 2.

Scheme 4. Preparation of hydrosilane 5.

Scheme 5. Preparation and ozone oxidation of 6, followed by transformation
to acyloin 9.

Chem. Eur. J. 2014, 20, 1 – 5 www.chemeurj.org � 2014 Wiley-VCH Verlag GmbH & Co. KGaA, Weinheim2&&

�� These are not the final page numbers!

Communication

http://www.chemeurj.org


In conclusion, we have developed an unprecedented asym-
metric ozone oxidation of silylalkenes by using a C2-symmetri-
cal dialkoxysilyl group as a chiral auxiliary. Further studies to
apply the asymmetric ozone oxidation to natural product syn-

thesis, along with investigations of the synthetic applications
of the C2-symmetrical dialkoxyhydrosilane, are in progress.
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Scheme 6. Scope and limitation of asymmetric ozone oxidation.
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Asymmetric Ozone Oxidation of
Silylalkene Using a C2-Symmetrical
Dialkoxysilyl Group as a Chiral
Auxiliary

Putting ozone to work : Ozone oxida-
tion of chiral alkenylsilanes prepared
from alkynes and a newly designed
chiral hydrosilane affords silylperoxides
with high diastereoselectivity (up to

94 % d.r. ; see scheme). The silylperox-
ides are convertible into enantioen-
riched chiral acyloins in a stereospecific
manner.
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