ORIGINAL RESEARCH

Transition metals in organic synthesis - Part 83[#]: Synthesis and pharmacological potential of carbazoles

Taylor A. Choi · Regina Czerwonka · Ronny Forke · Anne Jäger · Jan Knöll · Micha P. Krahl · Tilo Krause · Kethiri R. Reddy · Scott G. Franzblau · Hans-Joachim Knölker

Received: 17 October 2007/Accepted: 20 November 2007/Published online: 10 January 2008 © Birkhäuser Boston 2007

Abstract A series of carbazole derivatives with promising pharmacological properties has been prepared using either an iron-mediated or a palladium-catalyzed synthetic approach. The carbazole alkaloids carbazoquinocin C, carbazomadurin A and B, epocarbazolin A and B, neocarazostatin B, and carquinostatin A are anti-oxidants acting as free-radical scavengers. Thus, they represent potential lead compounds for the development of novel drugs against diseases initiated by oxygen-derived free radicals. Initiated by the first naturally occurring carbazole alkaloids with antituberculosis (anti-TB) activity, clausine K and micromeline, a study on the structure–activity relationships for anti-TB-active carbazole derivatives has been carried out. The 6-oxygenated carbazoles glycozoline and glycozolinine show antibiotic activity towards several microorganisms. The 7-oxygenated carbazole siamenol exhibits anti-HIV activity.

Introduction

[#] Part 82: (Forke *et al.*, 2007)

A broad structural range of carbazole alkaloids with useful biological activities has been isolated from nature (Chakraborty and Roy, 1991; Chakraborty 1993; Knölker and Reddy, 2002; Knölker 2005). Because of the pharmacological potential of these natural products, several research groups have developed diverse synthetic strategies (Chakraborty and Roy, 1991; Chakraborty 1993; Knölker and Reddy,

T. Krause · K. R. Reddy · H.-J. Knölker (🖂)

T. A. Choi · R. Czerwonka · R. Forke · A. Jäger · J. Knöll · M. P. Krahl ·

Department Chemie, Technische Universität Dresden, Bergstrasse 66, 01069 Dresden, Germany e-mail: hans-joachim.knoelker@tu-dresden.de

T. A. Choi · S. G. Franzblau

Institute for Tuberculosis Research, College of Pharmacy, University of Illinois at Chicago, 833 S. Wood St., MC 964, Chicago, IL 60612-7231, USA

2002; Knölker 2005; Kawasaki and Sakamoto, 1994; Moody 1994; Hibino and Sugino, 1995; Kirsch 2001; Lemster and Pindur, 2002; Agarwal *et al.*, 2005; Agarwal *et al.*, 2006). We have described two highly efficient approaches using either an iron-mediated or a palladium-catalyzed construction of the carbazole framework (Knölker and Reddy, 2002; Knölker 2005; Agarwal *et al.*, 2006). Both routes offer the advantage of functionalized building blocks, which can be combined by exploitation of transition-metal-mediated or catalyzed coupling reactions. Therefore, our synthetic strategy leads to highly convergent and short-step total syntheses of natural products and has been applied to structure–activity studies. In the present paper, we emphasize some recent achievements along these lines.

Results and Discussion

The carbazoquinocins, e.g., carbazoquinocin C, have been isolated from *Strepto-myces violaceus* 2448-SVT2 (Tanaka *et al.*, 1995). Our approach, using a palladium (II)-catalyzed oxidative cyclization as a key step, provides a simple four-step route to carbazoquinocin C (Scheme 1) (Knölker *et al.*, 2002).

Regioselective addition of aniline (1) to 2-methoxy-3-methyl-1,4-benzoquinone (2) afforded the anilinobenzoquinone 3. Treatment with catalytic amounts of palladium (II) acetate in the presence of cupric acetate as reoxidant led to 3-methoxy-2-methylcarbazole-1,4-quinone (4). Addition of heptylmagnesium chloride gave the carbazolequinol 5, which on treatment with acid provided carbazoquinocin C (6) in four steps and 39% overall yield. Carbazoquinocin C shows a strong inhibition of lipid peroxidation induced by free radicals (Tanaka *et al.*, 1995).

The carbazomadurins A and B have been isolated from the microorganism *Actinomadura madurae* 2808-SV1 (Kotoda *et al.*, 1997). On screening for 5-lipoxygenase inhibitors, the structurally related epocarbazolins A and B were found in the actinomycete strain *Streptomyces anulatus* T688-8 (Nihei *et al.*, 1993). A common approach to these natural products has been developed by sequential

Scheme 1 Palladium-catalyzed synthesis of carbazoquinocin C

application of three different palladium-catalyzed cross-coupling reactions (Scheme 2) (Knölker and Knöll, 2003; Knöll and Knölker, 2006).

Palladium (0)-catalyzed Buchwald–Hartwig coupling of the aryl triflate **7** with the arylamine **8** afforded the *N*,*N*-diarylamine **9**. The subsequent palladium (II)-mediated oxidative cyclization provided the pentasubstituted carbazole skeleton **10**. Change of the protecting groups led to the disilyl ether **11**. Introduction of the appropriate side chain at C-1 by a palladium (0)-catalyzed Stille coupling with the alkenylstannanes **12a** and **12b** afforded the 1-alkenylcarbazoles **13**. Reduction of the methyl esters gave the benzylic alcohols **14** as crucial intermediates for both classes of compounds. Removal of the silyl protecting groups provided carbazomadurin A (**15a**) and carbazomadurin B (**15b**) (Knölker and Knöll, 2003; Knöll and Knölker, 2006). Conversion of the disilyl ethers **14** to the trisilyl-protected intermediates **16**

Scheme 2 Palladium-catalyzed synthesis of the carbazomadurins and epocarbazolins

followed by epoxidation with dimethyldioxirane and desilylation afforded racemic epocarbazolin A (**17a**) and epocarbazolin B (**17b**) (Knöll and Knölker, 2006).

The carbazomadurins A and B exhibit a strong neuronal cell protecting activity against L-glutamate-induced cell death. The epocarbazolins A and B are potent inhibitors of rat 5-lipoxygenase (epocarbazolin A: $IC_{50} = 2.4 \mu M$; epocarbazolin B: $IC_{50} = 2.6 \mu M$) (Nihei *et al.*, 1993).

Neocarazostatin B has been isolated from the culture of *Streptomyces* sp. strain GP 38 (Kato *et al.*, 1991). The structurally related carquinostatin A, obtained from *Streptomyces exfoliatus* 2419-SVT2, represents the corresponding *ortho*-quinone derivative (Shin-ya *et al.*, 1993; Grammel *et al.*, 1998). Using the iron-mediated carbazole construction, a straightforward synthesis of both alkaloids has been developed; moreover, the absolute configuration of neocarazostatin B could be assigned (Scheme 3) (Czerwonka *et al.*, 2006).

Reaction of the iron complex salt **18** with the arylamine **19** in air resulted in electrophilic substitution in situ followed by oxidative cyclization to the tricarbonyliron-coordinated dihydrocarbazole **20**. Aromatization with demetalation and subsequent electrophilic bromination afforded the 6-bromocarbazole **21**. Nickelmediated prenylation and removal of the acetyl protecting groups from compound **22** provided (R)-(–)-neocarazostatin B (**23**). Oxidation with cerium (IV) ammonium

Scheme 3 Iron-mediated synthesis of (R)-(-)-neocarazostatin B and carquinostatin A

nitrate converted (*R*)-(–)-neocarazostatin B (23) into carquinostatin A (24). Neocarazostatin B is a potent inhibitor of the free-radical-induced lipid peroxidation in rat brain homogenate (IC₅₀ = 0.39 μ M) and was much more efficient than other well-known antioxidants (Kato *et al.*, 1991). Carquinostatin A is also an efficient antioxidant and shows neuronal cell protecting activity against L-glutamate-induced cell death (Shin-ya *et al.*, 1993).

7-Methoxy-*O*-methylmukonal has been isolated from the roots of *Murraya* siamensis (Ruangrungsi et al., 1990). Clausine O has been found in the root bark of the Chinese medicinal plant *Clausena excavata* (Wu et al., 1999). Clausine H (clauszoline-C) and clausine K (clauszoline-J) have been obtained from the stem bark of the same plant (Wu et al., 1996; Ito et al., 1996; 1997). Moreover, clausine K has also been obtained from the roots of *Clausena harmandiana* (Yenjai et al., 2000). The pharmacological potential initiated us to develop a simple iron-mediated approach to the 2,7-dioxygenated carbazole alkaloids (Scheme 4) (Kataeva et al., 2005).

Electrophilic substitution of 3-methoxy-4-methylaniline (**26**) by reaction with the 2-methoxy-substituted iron complex salt **25** afforded the iron complex **27**. Ironmediated arylamine cyclization followed by aromatization provided 2,7-dimethoxy-3-methylcarbazole (**28**), which served as relay to the subsequent carbazole alkaloids having the same substitution pattern. Oxidation with 2,3-Dichloro-5,6-dicyano-1,4benzoquinone (DDQ) led to 7-methoxy-*O*-methylmukonal (**29**) and subsequent ether cleavage gave clausine O (**30**). Further oxidation of the aldehyde **29** to the methyl ester afforded clausine H (**31**), which on ester cleavage provided clausine K (**32**). Clausine H (clauszoline-C) exhibits antiplasmodial activity against *Plasmodium falciparum* (IC₅₀ = 5.5–10.7 µg mL⁻¹) (Yenjai *et al.*, 2000). Clausine K (clauszoline-J) shows weak antimycobacterial activity against *Mycobacterium*

Scheme 4 Iron-mediated synthesis of 2,7-dioxygenated carbazole alkaloids

tuberculosis H_{37} Ra (MIC₉₀ = 100 µg mL⁻¹ = 369 µM) (Sunthitikawinsakul *et al.*, 2003).

Glycozoline and glycozolinine (glycozolinol) were isolated first from *Glycosmis pentaphylla* (Chakraborty 1966; Mukherjee *et al.*, 1983; Bhattacharyya *et al.*, 1984). Glycomaurrol has been found in the stem bark of *Glycosmis mauritiana* (Kumar *et al.*, 1989). Eustofoline-D, isolated from the root bark of *Murraya euchrestofolia* (Ito and Furukawa, 1990), has an unprecedented furo[2,3-*c*]carbazole framework and is one of only four natural furocarbazoles currently known (Fröhner *et al.*, 2004; Knölker and Reddy, 2005). 3-Formyl-6-methoxycarbazole and methyl 6-methoxycarbazole-3-carboxylate have been isolated from the roots of *Clausena lansium* (Li *et al.*, 1991). An antituberculosis bioassay-directed fractionation of the stem bark extract of *Micromelum hirsutum* led to the isolation of micromeline along with 3-formyl-6-methoxycarbazole (Ma *et al.*, 2005). Using the palladium-catalyzed synthesis we gained access to a whole series of 6-oxygenated carbazole alkaloids (Scheme 5) (Forke *et al.*, 2007).

Palladium (0)-catalyzed coupling of *p*-bromoanisole (**33**) with *p*-toluidine (**34**) and subsequent palladium (II)-catalyzed oxidative cyclization of the resulting N,N-diarylamine **35** provided glycozoline (**36**). Glycozoline (**36**) was then used as relay

Scheme 5 Palladium-catalyzed synthesis of 6-oxygenated carbazole alkaloids

to all the other 6-oxygenated carbazole alkaloids. Ether cleavage gave glycozolinine (glycozolinol) (**37**). Regioselective bromination of **37** at C-5 followed by nickelmediated prenylation provided glycomaurrol (**38**). Annulation of the furan ring at glycozolinie (**37**) led to eustifoline-D (**39**). Oxidation of glycozoline (**36**) using DDQ afforded 3-formyl-6-methoxycarbazole (**40**). Further selective oxidation (aldehyde to ester) provided methyl 6-methoxycarbazole-3-carboxylate (**41**). Bromination of **40** to 5-bromo-3-formyl-6-methoxycarbazole (**42**) followed by ether cleavage and nickel-mediated prenylation gave micromeline (**43**). Glycozoline and glycozolinine (glycozolinol) are antibiotics, with glycozolinine showing much stronger antibiotic activity (Chakraborty *et al*, 1975). Antimycobacterial activity against the *Mycobacterium tuberculosis* strain H₃₇Rv was reported for 3-formyl-6-methoxycarbazole (MIC₉₀ = 15.6 µg mL⁻¹ = 69 µM) and micromeline (MIC₉₀ = 31.5 µg mL⁻¹ = 113 µM) (Ma *et al.*, 2005).

The organic extract of the plant *Murraya siamensis*, collected in Thailand, has been reported to exhibit anti-HIV activity. Siamenol has been isolated in a bioassay-guided fractionation of this extract (Meragelman *et al.*, 2000). More recent investigations of the Chinese medicinal plant *Clausena excavata* led to the isolation of clauszoline-K, clausine C (clauszoline-L), clausine M, and clausine N (Wu *et al.*, 1999; Wu *et al.*, 1996; Ito *et al.*, 1997). A straightforward synthetic route to the 7-oxygenated carbazole alkaloids has been realized by using the palladium-catalyzed approach (Scheme 6) (Krahl *et al.*, 2006).

Palladium (0)-catalyzed amination of *p*-bromotoluene (**45**) with *m*-anisidine (**44**) to the *N*,*N*-diarylamine **46** followed by palladium(II)-catalyzed oxidative cyclization led to 7-methoxy-3-methylcarbazole (**47**) (Fig. 1) (Krahl *et al.*, 2006), which served as a relay to 7-oxygenated carbazole alkaloids. Regioselective bromination at

Scheme 6 Palladium-catalyzed synthesis of 7-oxygenated carbazole alkaloids

C-6, cleavage of the methyl ether and nickel-mediated prenylation afforded siamenol (**48**). Oxidation of **47** with DDQ led to clauszoline-K (**49**) (Fig. 2) [crystal data for clauszoline-K (**49**): $C_{14}H_{11}NO_2$, M = 225.24, orthorhombic, space group: *P*bca, a = 7.163(1), b = 13.245(1), c = 22.516(2) Å, V = 2136.2(4) Å³, Z = 8, $\rho_{calc} = 1.401$ g cm⁻³, $\mu = 0.095$ mm⁻¹, T = 198(2) K, $\lambda = 0.71073$ Å, θ range = 3.08–35.00°; reflections collected: 69965, independent: 4709 ($R_{int} = 0.0282$). The structure was solved by direct methods and refined by full-matrix least-squares on F^2 ; $R_1 = 0.0457$, $wR_2 = 0.1193$ [$I > 2\sigma(I)$]. CCDC-633273 contains the supplementary crystallographic data for this structure. These data can be obtained free of charge from The Cambridge Crystallographic Data Centre via www.ccdc.cam.ac.uk/data_request/cif. Further oxidation led to clausine C (clauszoline-L) (**50**) (Fig. 3) (Krahl *et al.*, 2006). Ether cleavage of clausine C (**50**) afforded clausine M (**51**), while ester cleavage gave clausine N (**52**). Siamenol showed HIV inhibition in the XTT-tetrazolium assay (EC₅₀ = 2.6 µg mL⁻¹) (Meragelman *et al.*, 2000).

Based on the reports of naturally occurring carbazole alkaloids with inhibiting activity against *M. tuberculosis* (Sunthitikawinsakul *et al.*, 2003; Ma *et al.*, 2005), we started a project to investigate the structure–activity relationships for this class of compounds (Choi *et al.*, 2006). The present study provides further data on the

Fig. 1 Crystal structure of 7-methoxy-3-methylcarbazole (47), CCDC-609679

Fig. 2 Crystal structure of clauszoline-K (49), CCDC-633273

Fig. 3 Crystal structure of clausine C (clauszoline-L) (50), CCDC- 609678

anti-TB activity of carbazole derivatives (Table 1). Minimum inhibitory concentration (MIC₉₀) values for inhibition of *M. tuberculosis* $H_{37}Rv$ were determined using the microplate alamar blue assay (MABA) (Collins and Franzblau, 1997; Pauli *et al.*, 2005). Rifampin (rifampicin) and isoniazid were used as positive

Compound	Name	MIC ₉₀ ^a	IC ₅₀ ^b	SI ^c
4	3-methoxy-2-methylcarbazole-1,4-quinone	8	>128	>16
21	6-bromocarbazole derivative	55	25	0.5
28	2,7-dimethoxy-3-methylcarbazole	>128	>128	-
29	7-methoxy-O-methylmukonal	>128	96	< 0.8
30	clausine O	89	114	1.3
32	clausine K (clauszoline-J)	>128	25	< 0.2
36	glycozoline	>128	-	_
37	glycozolinine (glycozolinol)	123	57	0.5
39	eustifoline-D	>128	>128	-
40	3-formyl-6-methoxycarbazole	99	>128	>1.3
41	methyl 6-methoxycarbazole-3-carboxylate	32	>128	>4.0
42	5-bromo-3-formyl-6-methoxycarbazole	>128	78	<0.6
43	micromeline	>128	-	_
47	7-methoxy-3-methylcarbazole	>128	-	_
48	siamenol	22	15	0.7
49	clauszoline-K	>128	-	-
50	clausine C (clauszoline-L)	>128	-	_
51	clausine M	19	35	1.8
52	clausine N	>128	-	_
RMP	rifampin (rifampicin)	0.09	105	1167
INH	isoniazid	0.4	>128	>320

Table 1 Antituberculosis activity, cytotoxicity, and selectivity indices of carbazole derivatives

^a Minimum inhibitory concentration (µM) against *M. tuberculosis* H₃₇Rv in the MABA assay.

^b Cytotoxicity on Vero cells. Both values are means of three replicate experiments; >128 indicates values higher than the maximum concentration applied.

^c Selectivity index: $SI = IC_{50}/MIC_{90}$

383

controls in the assay and solvent as negative control. All compounds were tested for in vitro cytotoxicity toward Vero cells (African green monkey kidney cells) (Pauli et al., 2005; Falzari et al., 2005). The MIC₉₀ value found for natural clausine K (clauszoline-J) (32) (369 μ M) (Sunthitikawinsakul *et al.*, 2003) was much higher than the highest concentration applied in our assay (128 μ M). Moreover, a different strain of *M. tuberculosis* ($H_{37}Ra$) was used in that assay. The MIC₉₀ reported for natural micromeline (43) (113 μ M) (Ma *et al.*, 2005) was in the range of the highest concentration used herein. This may explain why no anti-TB activity was found for clausine K (32) and micromeline (43) in the present study. However, a weak anti-TB activity described for natural 3-formyl-6-methoxycarbazole (40) (MIC₉₀ = 69) μ M) (Ma et al., 2005) could be confirmed. The promising antituberculosis activity of 3-methoxy-2-methylcarbazole-1,4-quinone (4) (Choi et al., 2006) was confirmed as well. Also methyl 6-methoxycarbazole-3-carboxylate (41) exhibited anti-TB activity and was nontoxic for the mammalian cell line. Some other compounds screened in this study showed weak anti-TB activity but were found to be cytotoxic at the same time: the 6-bromocarbazole derivative 21, clausine O (30), glycozolinine (glycozolinol) (37), siamenol (48), and clausine M (51).

In conclusion, carbazoles represent a novel class of potential anti-TB drug candidates. Further structural modifications of the identified hits for improvement of the efficacy are in progress.

Acknowledgement We are grateful to the European Funds for Regional Development and the State of Saxony (EFRE project 4212/06-08) for financial support of our research. We would also like to thank JADO Technologies, Dresden, for their support.

References

- Agarwal S, Cämmerer S, Filali S, Fröhner W, Knöll J, Krahl MP, Reddy KR, Knölker H-J (2005) Novel routes to pyrroles, indoles and carbazoles – applications in natural product synthesis. Curr Org Chem 9:1601–1614
- Agarwal S, Filali S, Fröhner W, Knöll J, Krahl MP, Reddy KR, Knölker H-J (2006) Application of oxidative cyclizations to the synthesis of bioactive nitrogen-containing heterocycles. In: Kartsev VG (ed) The chemistry and biological activity of synthetic and natural compounds – nitrogen-containing heterocycles, vol. 1. ICSPF Press, Moscow, p 176–186
- Bhattacharyya P, Sarkar T, Chakraborty A, Chowdhury BK (1984) Structure & synthesis of glycozolinol, a new carbazole alkaloid from *Glycosmis pentaphylla* (Retz) DC. Indian J Chem 23B:49–51
- Chakraborty DP (1966) Glycozoline, a carbazole derivative from *Glycosmis pentaphylla* (Retz) DC. Tetrahedron Lett 661–664
- Chakraborty DP, Das K, Das BP, Chowdhury BK (1975) On the antibiotic properties of some carbazole alkaloids. Trans Bose Res Inst 38:1–4
- Chakraborty DP, Roy S (1991) Carbazole alkaloids III. In: Herz W, Grisebach H, Kirby GW, Steglich W, Tamm C (eds.) Progress in the chemistry of organic natural products, vol. 57. Springer, Wien, pp 71–152
- Chakraborty DP (1993) Chemistry and biology of carbazole alkaloids. In: Cordell GA (ed) The alkaloids, vol. 44. Academic, New York, p 257–364
- Choi T, Czerwonka R, Fröhner W, Krahl MP, Reddy KR, Franzblau SG, Knölker H-J (2006) Synthesis and activity of carbazole derivatives against *Mycobacterium tuberculosis*. Chem Med Chem 1:812–815
- Collins LA, Franzblau SG (1997) Microplate alamar blue assay versus BACTEC 460 system for highthroughput screening of compounds against *Mycobaterium tuberculosis* and *Mycobacterium avium*. Antimicrob Agents Chemother 41:1004–1009

- Czerwonka R, Reddy KR, Baum E, Knölker H-J (2006) First enantioselective total synthesis of neocarazostatin B, determination of its absolute configuration and transformation into carquinostatin A. Chem Commun 711–713
- Falzari K, Zhu Z, Pan D, Liu H, Hongmanee P, Franzblau SG (2005) In vitro and in vivo activities of macrolide derivatives against *Mycobacterium tuberculosis*. Antimicrob Agents Chemother 49:1447– 1454
- Forke R, Krahl MP, Krause T, Schlechtingen G, Knölker H-J (2007) First total synthesis of methyl 6methoxycarbazole-3-carboxylate, glycomaurrol, the anti-TB active micromeline, and the furo[2,3c]carbazole alkaloid eustifoline-D. Synlett 268–272
- Fröhner W, Krahl MP, Reddy KR, Knölker H-J (2004) Synthetic routes to naturally occurring furocarbazoles. Heterocycles 63:2393–2407
- Grammel H, Wolf H, Gilles E-D, Huth F, Laatsch H (1998) Carbazole Antibiotics Synthesis in a *Streptomyces tendae* bald mutant, created by acriflavine treatment. Z Naturforsch 53c:325–330
- Hibino S, Sugino E (1995) Synthesis of [b]-annelated indoles by thermal electrocyclic reactions. In: Moody CJ (ed) Advances in nitrogen heterocycles, vol 1. JAI, Greenwich (CT), p 205–227
- Ito C, Furukawa H (1990) New carbazole alkaloids from Murraya euchrestifolia Hayata. Chem Pharm Bull 38:1548–1550
- Ito C, Ohta H, Tan H T-W, Furukawa H (1996) Constituents of *Clausena excavata*. Isolation and structural elucidation of seven new carbazole alkaloids and a new coumarin. Chem Pharm Bull 44:2231–2235
- Ito C, Katsuno S, Ohta H, Omura M, Kajiura I, Furukawa H (1997) Constituents of *Clausena excavata*. Isolation and structural elucidation of new carbazole alkaloids. Chem Pharm Bull 45:48–52
- Ito C, Katsuno S, Ohta H, Omura M, Kajiura I, Furukawa H. (1997) Constituents of *Clausena excavata*. Isolation and structural elucidation of new carbazole alkaloids. Chem Pharm Bull 45:48–52
- Kataeva O, Krahl MP, Knölker H-J (2005) First total synthesis of the biologically active 2,7-dioxygenated tricyclic carbazole alkaloids 7-methoxy-O-methylmukonal, clausine H (clauszoline-C), clausine k (clauszoline-J) and clausine O. Org Biomol Chem 3:3099–3101
- Kato S, Shindo K, Kataoka Y, Yamagishi Y, Mochizuki J (1991) Studies on free radical scavenging substances from microorganisms – II. Neocarazostatins A, B and C, novel free radical scavengers. J Antibiot 44:903–907
- Kawasaki T, Sakamoto M (1994) Electrocyclisations for synthesis of carbazoles and their annulated compounds. J Indian Chem Soc 71:443–457
- Kirsch GH (2001) Heterocyclic analogues of carbazole alkaloids. Curr Org Chem 5:507-518
- Knölker H-J, Reddy KR (2002) Isolation and synthesis of biologically active carbazole alkaloids. Chem Rev 102:4303–4427
- Knölker H-J, Fröhner W, Reddy KR (2002) Total synthesis of the potent lipid peroxidation inhibitor carbazoquinocin C by an intramolecular palladium-catalyzed oxidative coupling of an anilino-1,4benzoquinone. Synthesis 557–564
- Knölker H-J, Knöll J (2003) First total synthesis of the neuronal cell protecting carbazole alkaloid carbazomadurin A by sequential transition metal-catalyzed reactions. Chem Commun 1170–1171
- Knölker H-J (2005) Occurrence, biological activity, and convergent organometallic synthesis of carbazole alkaloids. Top Curr Chem 244:115–148
- Knölker H-J, Reddy KR (2005) Total synthesis of furocarbazole alkaloids. In: Kartsev VG (ed.) Selected methods for synthesis and modification of heterocycles – the chemistry and biological activity of natural indole systems (Part 1), vol. 4. ICSPF, Moscow, pp 166–181
- Knöll J, Knölker H-J (2006) First total synthesis and assignment of the absolute configuration of the neuronal cell protecting alkaloid carbazomadurin B. Synlett 651–653
- Knöll J, Knölker H-J (2006) First total synthesis of (±)-epocarbazolin A and epocarbazolin B, and asymmetric synthesis of (-)-epocarbazolin A via Shi epoxidation. Tetrahedron Lett 47:6079–6082
- Kotoda N, Shin-ya K, Furihata K, Hayakawa Y, Seto H (1997) Isolation and structure elucidation of novel neuronal cell protecting substances, carbazomadurins A and B produced by *Actinomadura madurae*. J Antibiot 50:770–772
- Krahl MP, Jäger A, Krause T, Knölker H-J (2006) First total synthesis of the 7-oxygenated carbazole alkaloids clauszoline-K, 3-formyl-7-hydroxycarbazole, clausine M, clausine N and the anti-HIV active siamenol using a highly efficient palladium-catalyzed approach. Org Biomol Chem 4:3215– 3219
- Kumar V, Reisch J, Wickramasinghe A (1989) Glycomaurin and glycomaurol, new carbazole alkaloids from *Glycosmis mauritiana* (Rutaceae) Bark. Aust J Chem 42:1375–1379

- Lemster T, Pindur U (2002) Design synthesis and biological/biophysical evaluation of new oligopyrrole carboxamides, biscarbazoles, oxocarbazoles and benzo[a]carbazoles: antitumor and antioxidative compounds. Recent Res Dev Org Bioorg Chem 5:99–115
- Li W-S, McChesney JD, El-Feraly FS (1991) Carbazole alkaloids from *Clausena lansium*. Phytochemistry 30:343–346
- Ma C, Case RJ, Wang Y, Zhang H-J, Tan GT, Hung NV, Cuong NM, Franzblau SG, Soejarto DD, Fong HHS, Pauli GF (2005) Anti-tuberculosis constituents from the stem bark of *Micromelum hirsutum*. Planta Med 71:261–267
- Meragelman KM, McKee TC, Boyd MR (2000) Siamenol, a new carbazole alkaloid from Murraya siamensis. J Nat Prod 63:427–428
- Moody CJ (1994) Synthesis of carbazole alkaloids. Synlett 681-688
- Mukherjee S, Mukherjee M, Ganguly SN (1983) Glycozolinine, a carbazole derivative from *Glycosmis* pentaphylla. Phytochemistry 22:1064–1065
- Nihei Y, Yamamoto H, Hasegawa M, Hanada M, Fukagawa Y, Oki T (1993) Epocarbazolins A and B, novel 5-lipoxygenase inhibitors – taxonomy, fermentation, isolation, structures and biological activities. J Antibiot 46:25–33
- Pauli GF, Case RJ, Inui T, Wang Y, Cho S, Fischer NH, Franzblau SG (2005) New perspectives on natural products in TB drug research. Life Sci 78:485–494
- Ruangrungsi N, Ariyaprayoon J, Lange GL, Organ MG (1990) Three new carbazole alkaloids isolated from *Murraya siamensis*. J Nat Prod 53:946–952
- Shin-ya K, Tanaka M, Furihata K, Hayakawa Y, Seto H (1993) Structure of carquinostatin A, a new neuronal cell protecting substance produced by *Streptomyces exfoliatus*. Tetrahedron Lett 34:4943– 4944
- Sunthitikawinsakul A, Kongkathip N, Kongkathip B, Phonnakhu S, Daly JW, Spande TF, Nimit Y, Rochanaruangrai S (2003) Coumarins and carbazoles from *Clausena excavata* exhibited antimycobacterial and antifungal activities. Planta Med 69:155–157
- Tanaka M, Shin-ya K, Furihata K, Seto H (1995) Isolation and structural elucidation of antioxidative substances, carbazoquinocins A to F. J Antibiot 48:326–328
- Wu T-S, Huang S-C, Wu P-L (1996) Carbazole alkaloids from stem bark of *Clausena excavata*. Phytochemistry 43:1427–1429
- Wu T-S, Huang S-C, Wu P-L, Teng C-M (1996) Carbazole alkaloids from *Clausena excavata* and their biological activity. Phytochemistry 43:133–140
- Wu T-S, Huang S-C, Wu P-L, Kuoh C-S (1999) Alkaloidal and other constituents from the root bark of *Clausena excavata*. Phytochemistry 52:523–527
- Yenjai C, Sripontan S, Sriprajun P, Kittakoop P, Jintasirikul A, Tanticharoen M, Thebtaranonth Y (2000) Coumarins and carbazoles with antiplasmodial activity from *Clausena harmandiana*. Planta Med 66:277–279