

Note

Subscriber access provided by NEW YORK UNIV

Metal-Free Tandem Oxidative Coupling of Primary Alcohols with Azoles for the Synthesis of Hemiaminal Ethers

Jinwei Sun, Yu Zhang, Sankaran Mathan, Yi Wang, and Yi Pan

J. Org. Chem., Just Accepted Manuscript • DOI: 10.1021/acs.joc.5b02516 • Publication Date (Web): 21 Mar 2016

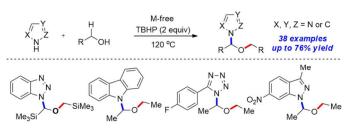
Downloaded from http://pubs.acs.org on March 25, 2016

Just Accepted

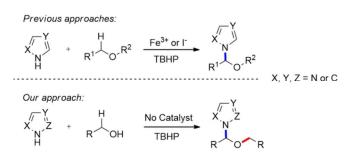
"Just Accepted" manuscripts have been peer-reviewed and accepted for publication. They are posted online prior to technical editing, formatting for publication and author proofing. The American Chemical Society provides "Just Accepted" as a free service to the research community to expedite the dissemination of scientific material as soon as possible after acceptance. "Just Accepted" manuscripts appear in full in PDF format accompanied by an HTML abstract. "Just Accepted" manuscripts have been fully peer reviewed, but should not be considered the official version of record. They are accessible to all readers and citable by the Digital Object Identifier (DOI®). "Just Accepted" is an optional service offered to authors. Therefore, the "Just Accepted" Web site may not include all articles that will be published in the journal. After a manuscript is technically edited and formatted, it will be removed from the "Just Accepted" Web site and published as an ASAP article. Note that technical editing may introduce minor changes to the manuscript text and/or graphics which could affect content, and all legal disclaimers and ethical guidelines that apply to the journal pertain. ACS cannot be held responsible for errors or consequences arising from the use of information contained in these "Just Accepted" manuscripts.

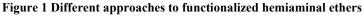
The Journal of Organic Chemistry is published by the American Chemical Society. 1155 Sixteenth Street N.W., Washington, DC 20036

Published by American Chemical Society. Copyright © American Chemical Society. However, no copyright claim is made to original U.S. Government works, or works produced by employees of any Commonwealth realm Crown government in the course of their duties.


Metal-Free Tandem Oxidative Coupling of Primary Alcohols with Azoles for the Synthesis of Hemiaminal Ethers

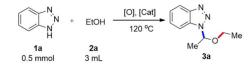
Jinwei Sun^a, Yu Zhang^a, Sankaran Mathan^a, Yi Wang^a* and Yi Pan^{abc}


^aSchool of Chemistry & Chemical Engineering, Nanjing University, Nanjing, 210093, China.


^bState of Key Laboratory of Coordination, Nanjing University.

^cCollaborative Innovation Center of Advanced Microstructures, Nanjing University

ABSTRACT: A novel metal-free tandem oxidative coupling process for the synthesis of hemiaminal ethers has been developed. This protocol could be applied for the C-N bond formation of electron-deficient trizoles, tetrazoles, carbazoles and indazoles with primary alcohols.



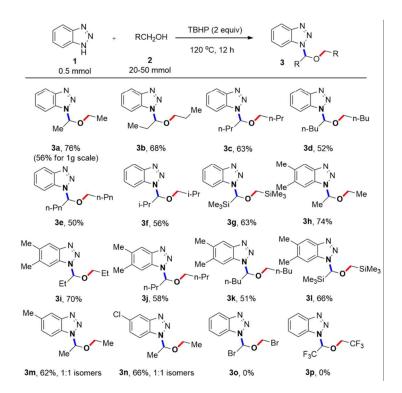
N-alkylated azoles represent an important class of compounds because of their common occurrence in medicinally useful products.¹ The development of new synthetic methods for the functionalization of azoles is of great interest.²⁻⁴ Conventionally, *N*-alkylated azoles have been synthesized by coupling of azoles with electrophiles.⁵⁻⁹ In the past decade, there has been many efforts in the exploration of metal-catalyzed and metal-free C–H bond activation/functionalization strategies for the construction of C–N bond.

Highly controlled amination of oxygen-adjacent sp³ carbons generally occur with cyclic ethers (Figure 1).¹⁰⁻²⁵ The reports of C-H bond functionalization for primary alcohols were rather limited.²⁶⁻³⁰

The C-H bond activation of primary alcohols with hydroperoxides has proven to be a challenging task due to the poor chemoselectivity of the oxidant. Contrary to ethers, when applying the typical oxidative coupling conditions with alcohols and azoles, the expected result would be the C-C bond coupling of nucleophilic carbon in azoles with the sp³-hybridized carbon in alcohols at α position.²⁷ When azoles without sp² C-H at 2-positon are employed, the dehydrogenative C-C coupling pathway would be unattainable and the C-N bond could form instead. Indeed, our preliminary study indicated that when benzotriazole was mixed with hydroperoxide in excessive amount of ethanol as the solvent under high temperature, the *N*-alkylation occurred and overreacted hemiaminal ether was isolated as the final product. To the best of our knowledge, there has been no such example of 2A+B tandem oxidative C-N coupling transformation reported up to date. Therefore, an investigation has been initiated to find out the scope and pathway of this novel process that could potentially be applied for the construction of a range of azole functionalized hemiaminal ethers.

Table 1 Optimization of the reaction conditions

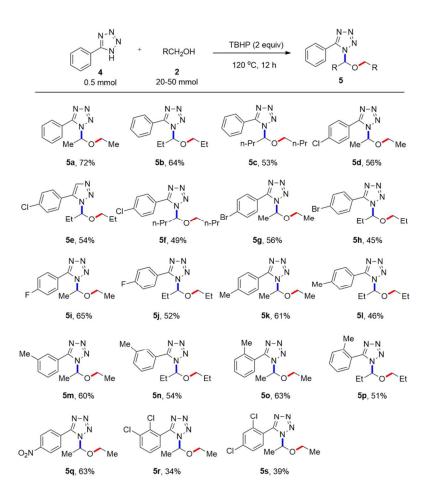
entry	oxidant (2 equiv)	catalyst	yield (%)
1	DTBP	-	0
2	BPO	-	0
3	TBPB	-	0
4	$K_2S_2O_8$	-	0
5	NIS	-	0
6	H_2O_2	-	0
7	BQ	-	0
8	DDQ	-	trace
9	DCP	-	trace
10	CAN	-	28
11	TBHP	-	76
12	TBHP	Fe(acac) ₃	12
13	TBHP	AgNO ₃	15
14	TBHP	Pd(OAc) ₂	56
15	TBHP	Mn(OAc) ₃	trace

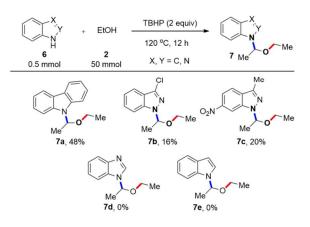

DTBP = Di-tert-butyl peroxide, BPO = Benzoyl peroxide, TBPB = tert-Butyl perbenzoate, BQ = 1,4-Benzoquinone, DDQ = 2,3-Dichloro-5,6-dicyano-1,4-

Benzoquinone, DCP = Dicumyl peroxide, CAN = Ceric ammonium nitrate, TBHP = tert-Butyl hydroperoxide,

The Journal of Organic Chemistry

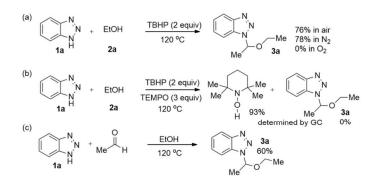
Our study began with a model reaction of benzotriazole and ethanol in the presence of different oxidants. We first examined DTBP in ethanol at 120 °C for 12 h, no *N*-alkylation product was obtained (entry 1). When using BPO, TBPB, $K_2S_2O_8$, NIS, H_2O_2 or benzoquinone, similar result was observed (entry 2-7). Other oxidants such as DDQ and DCP afforded trace amount of product (entry 8 and 9). CAN afforded a product in moderate yield which proven to be the hemiaminal ether **3a** (28%, entry 10). In other words, a second equivalent of ethanol reacted with the triazole after heating to a high temperature. To our delight, **3a** was obtained in high yield when using TBHP as the oxidant (76%, entry 11). Lower conversions were achieved with metal salt additives (entry 12-15).

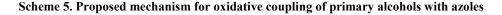

Scheme 1. Reactions of 1H-benzotriazole derivatives with aliphatic primary alcohols

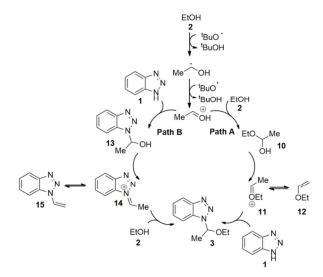

With the optimized conditions in hand (Table 1, entry 11), we investigated the scope of this tandem oxidative coupling reaction. Benzotriazoles with both electron-withdrawing and electron-donating substituents could react with various primary alcohols to give hemiaminal ethers in good yields (Scheme 1). The reaction efficacy decreased when bulky substrates were used (**3a-3e**). High yields were obtained with silyl-substituted alcohols (**3g** and **3l**). The unsymmetrical benzotriazoles afforded 1:1 mixture of isomers that could be identified on the NMR spectra (**3m** and **3n**). Bromo- and trifluoromethyl-substituted alcohols did not afford the desired products (**3o** and **3p**).

To explore the generality of this protocol, we also tested the pharmacologically useful 1*H*-tetrazole derivatives (Scheme 2). A variety of alkoxyl sp³ hydrogens were activated by TBHP. The reactions of halogenated 1*H*-tetrazoles resulted in the formation of **5d**-**5j** in high yields. Also, the reactions of nitrophenyl substrate furnished the corresponding products in similar yields (**5q**, 63%).

Scheme 2. Reactions of 5-phenyl-1*H*-tetrazole derivatives with aliphatic primary alcohols






The methodology could be applied to *N*-heterocycles such as carbazoles and indazoles, moderate yields were achieved (Scheme 3, **7a-7c**). However, no desired product was observed for benzoimidazoles and indoles (**7d** and **7e**). This is due to the competitive sp^2 C-H in azole that being activated primarily under those conditions.

Scheme 4. Control experiments

In order to elucidate the reaction mechanism, we carried out a series of control experiments. When the reaction was conducted under various atmospheres, difficult outcomes were observed. In air or under a nitrogen atmosphere, the reaction proceeded uneventfully, however in the presence of oxygen the reaction did not occur; this latter observation is suggestive of a radical pathway (Scheme 4a). The attempt of trapping the alkoxyl radical with TEMPO resulted in no desired hemiaminal ether product, only a proton was captured and detected by GC-MS (Scheme 4b). Based on these results, we assumed that the alcohol was first oxidized to aldehyde by TBHP before reacting with the azole substrates. Indeed, when the oxidant TBHP was replaced by acetaldehyde, the hemiaminal ether product was afforded in moderate yield, which indicated the reaction might go through the hemiacetal pathway (Scheme 4c).

A plausible mechanism is proposed based on the control experiments (Scheme 5). According to the previous reports,^{13,15} it is believed that active oxonium ion is the crucial intermediate in such amination reaction. Initially ethanol **2** is oxidized by TBHP to form acetaldehyde,³¹ which undergoes condensation reaction with another equivalent of ethanol to form the hemiacetal **10**, followed by elimination to give the active oxonium species **11**. Finally, nucleophilic attack of the azole **1** to the oxonium intermediate **11** furnishes the title product **3** (Path A). Alternatively, acetaldehyde first reacts with benzotriazole **1** and goes through similar iminium intermediate **14** to provide the title product **3** (Path B).

CONCLUSIONS

In summary, we have demonstrated a novel protocol for the oxidative coupling of azoles with primary alcohols. This metal-free amination pathway presents a direct access to a variety of hemiacetal ethers of electron-deficient trizoles, tetrazoles, carbazoles and indazoles.

EXPERIMENTAL SECTION

General Considerations. Commercially available reagents were used as received without purification. TBHP (5.5 M in decane) was purchased from Sigma–Aldrich. Column chromatography was carried out on silica gel (300–400 mesh). Analytical thin–layer chromatography was performed on glass plates of Silica Gel GF–254 with detection by UV. ¹H and ¹³C NMR spectra were recorded on a 400M spectrometer. The chemical shift references were as follows: ¹H NMR (400 MHz, CDCl₃) 7.26 ppm. ¹³C NMR (100 MHz, CDCl₃) 77.0 ppm. HRMS spectra were carried out on TOF MS ESI. Melting point determination was taken on a Melt–Temp apparatus (X-4) and was uncorrected.

General procedure. To a Schlenk tube equipped with a magnetic stir bar were added (1 or 4, 0.5 mmol) in 3 mL of aliphatic primary alcohol (20-50 mmol). Then TBHP (5.5 M in decane, 1 mmol, 0.2 mL) was added before the tube was sealed and the reaction mixture was stirred at 120 °C for 12 h. After required reaction time, the mixture was cooled down to room temperature, diluted in ethyl acetate, and washed with brine. The aqueous phase was extracted with ethyl acetate. The combined organic layers were dried over Na₂SO₄ and concentrated in *vacuo*, and the resulting residue was purified by silica gel column chromatography (hexane/ethyl acetate) to afford the product. All the reactions were carried out in a 50 mL vessel filled with nitrogen. The volume of the solution is about 4 mL. Over 90% of head space was left in the vessel. Although the reaction was heated to a high temperature (120 degrees for the oil bath), the temperature in the vessel was only about 100 degrees and the pressure was not too high to be hazardous. We have also attempted the reaction in a mild reaction, when the temperature lowered down to 80 degrees, however, the yield decreased to 60%. Therefore, these conditions are reasonable and necessary.

1-(1-ethoxyethyl)-1*H*-benzo[*d*][1,2,3]triazole (3a): Colorless oil. Yield: 72 mg (76%). Large scale reaction (10 mmol) has been performed. Yield: 1.1 g (56%). ¹H NMR δ 8.05 (d, J = 8.4 Hz, 1H), 7.78 (d, J = 8.3 Hz, 1H), 7.51-7.39 (m, 1H), 7.41-7.32 (m, 1H), 6.24 (q, J = 6.1 Hz, 1H), 3.50 (dq, J = 9.4, 7.0 Hz, 1H), 3.23 (dq, J = 9.4, 7.1 Hz, 1H), 1.84 (d, J = 6.1 Hz, 3H), 1.11 (t, J = 7.0 Hz, 3H). ¹³C NMR δ 146.7, 131.1, 127.3, 124.1, 120.0, 111.1, 87.0, 64.3, 21.1, 14.6. HRMS (ESI): Calcd. for C₁₀H₁₃N₃ONa (M+Na)⁺ 214.0956, found 214.0957.

1-(1-propoxypropyl)-1*H***-benzo[***d***][1,2,3]triazole (3b): Colorless oil. Yield: 75 mg (68%). ¹H NMR δ 8.06 (d, J = 8.3 Hz, 1H), 7.76 (d, J = 8.3 Hz, 1H), 7.45 (ddd, J = 8.2, 7.0, 0.9 Hz, 1H), 7.36 (ddd, J = 8.0, 7.0, 0.9 Hz, 1H), 5.95 (t, J = 6.8 Hz, 1H), 3.41 (dt, J = 9.3, 6.5 Hz, 1H), 3.15 (dt, J = 9.3, 6.7 Hz, 1H), 2.35-2.21 (m, 1H), 2.19-2.08(m, 1H), 1.59-1.41 (m, 2H), 0.88 (t, J = 7.5 Hz, 3H), 0.81 (t, J = 7.4 Hz, 3H). ¹³C NMR δ 146.7, 131.2, 127.2, 124.1, 120.0, 111.3, 92.2, 70.7, 28.0, 22.4, 10.4, 9.3. HRMS (ESI): Calcd. for C₁₂H₁₇N₃ONa (M+Na)⁺ 242.1269, found 242.1272.**

1-(1-butoxybutyl)-1*H*-benzo[*d*][1,2,3]triazole (3c): Colorless oil. Yield: 77 mg (63%). ¹H NMR δ 8.07 (d, *J* = 8.4 Hz, 1H), 7.77 (d, *J* = 8.3 Hz, 1H), 7.46 (m, 1H), 7.37 (m, 1H), 6.04 (t, *J* = 6.8 Hz, 1H), 3.45 (dt, *J* = 9.4, 6.4 Hz, 1H), 3.20 (dt, *J* = 9.4, 6.6 Hz, 1H), 2.31-2.18 (m, 1H), 2.14-2.02 (m, 1H), 1.54-1.42 (m, 3H), 1.31-1.22 (m, 3H), 0.92 (t, *J* = 7.4 Hz, 3H), 0.80 (t, *J* = 7.4 Hz, 3H). ¹³C NMR δ 146.8, 131.2, 127.3, 124.1, 120.0, 111.3, 90.9, 68.9, 36.7, 31.2, 19.1, 18.2, 13.6, 13.4. HRMS (ESI): Calcd. for C₁₄H₂₁N₃ONa (M+Na)⁺ 270.1582, found 270.1580.

1-(1-(pentyloxy)pentyl)-1*H*-benzo[*d*][1,2,3]triazole (3d): Colorless oil. Yield: 71 mg (52%). ¹H NMR δ 8.04 (d, *J* = 8.4 Hz, 1H), 7.75 (d, *J* = 8.3 Hz, 1H), 7.47-7.40 (m, 1H), 7.37-7.30 (m, 1H), 6.00 (t, *J* = 6.8 Hz, 1H), 3.42 (dt, *J* = 9.4, 6.5 Hz, 1H), 3.16 (dt, *J* = 9.3, 6.6 Hz, 1H), 2.29-2.20 (m, 1H), 2.13-2.04 (m, 1H), 1.52-1.42 (m, 2H), 1.40-1.25 (m, 3H), 1.22-1.08 (m, 5H), 0.82 (t, *J* = 7.2 Hz, 3H), 0.77 (t, *J* = 7.2 Hz, 3H). ¹³C NMR δ 146.7, 131.2, 127.2, 124.0, 119.9, 111.2, 91.0, 69.0, 34.3, 28.7, 27.9, 26.7, 22.1, 22.0, 13.8, 13.7. HRMS (ESI): Calcd. for C₁₆H₂₆N₃O (M+H)⁺ 276.2076, found 276.2078.

1-(1-(hexyloxy)hexyl)-1*H*-benzo[*d*][1,2,3]triazole (3e): Colorless oil. Yield: 75 mg (50%). ¹H NMR δ 8.07 (d, *J* = 8.3 Hz, 1H), 7.77 (d, *J* = 8.3 Hz, 1H), 7.51-7.43 (m, 1H), 7.41-7.33 (m, 1H), 6.02 (t, *J* = 6.8 Hz, 1H), 3.44 (dt, *J* = 9.4, 6.5 Hz, 1H), 3.19 (dt, *J* = 9.4, 6.6 Hz, 1H), 2.26 (m, 1H), 2.10 (m, 1H), 1.54 -1.44 (m, 2H), 1.30-1.13 (m, 12H), 0.84 (t, *J* = 4.9 Hz, 3H), 0.81 (t, *J* = 4.9 Hz, 3H). ¹³C NMR δ 146.8, 131.2, 127.2, 124.1, 120.0, 111.3, 91.1, 69.1, 34.7, 31.3, 31.1, 29.1, 25.5, 24.5, 22.5, 22.3, 13.9, 13.8. HRMS (ESI): Calcd. for C₁₈H₂₉N₃ONa (M+Na)⁺ 326.2208, found 326.2207.

1-(1-isobutoxy-2-methylpropyl)-1*H*-benzo[*d*][1,2,3]triazole (3f): Colorless oil. Yield: 69 mg (56%). ¹H NMR δ 8.07 (d, *J* = 8.3 Hz, 1H), 7.76 (d, *J* = 8.3 Hz, 1H), 7.48-7.42 (m, 1H), 7.41-7.34 (m, 1H), 5.61 (d, *J* = 8.9 Hz, 1H), 3.20 (dd, *J* = 9.1, 6.5 Hz, 1H), 2.98 (dd, *J* = 9.1, 6.5 Hz, 1H), 2.56 (ddd, *J* = 13.5, 6.7, 2.1 Hz, 1H), 1.83 (dt, *J* = 13.3, 6.6 Hz, 1H), 1.21 (d, *J* = 6.6 Hz, 3H), 0.86 (d, *J* = 6.7 Hz, 3H), 0.81 (d, *J* = 6.7 Hz, 3H), 0.63 (d, *J* = 6.8 Hz, 3H). ¹³C NMR δ 146.8, 131.4, 127.2, 124.1, 120.0, 111.5, 96.5, 76.2, 33.3, 28.2, 19.2, 19.1, 18.9, 17.8. HRMS (ESI): Calcd. for C₁₄H₂₁N₃ONa (M+Na)⁺ 270.1582, found 270.1576.

1-((trimethylsilyl)((trimethylsilyl)methoxy)methyl)-1*H*-benzo[*d*][1,2,3]triazole (3g): Pale white solid. Melting point: 91-92 °C. Yield: 96 mg (63%). ¹H NMR δ 8.06 (d, *J* = 8.3 Hz, 1H), 7.66 (d, *J* = 8.3 Hz, 1H), 7.44 (dd, *J* = 11.3, 4.0 Hz, 1H), 7.36 (dd, *J* = 11.3, 4.0 Hz, 1H), 5.64 (s, 1H), 3.07 (d, *J* = 12.5 Hz, 1H), 2.98 (d, *J* = 12.5 Hz, 1H), 0.12 (s, 9H), -0.01 (s, 9H). ¹³C NMR δ 146.3, 133.1, 126.9, 123.8, 119.9, 111.1, 91.0, 65.7, -3.2, -3.3. HRMS (ESI): Calcd. for C₁₄H₂₆N₃OSi₂ (M+H)⁺ 308.1614, found 308.1613.

1-(1-ethoxyethyl)-5,6-dimethyl-1*H*-benzo[*d*][1,2,3]triazole (3h): Colorless oil. Yield: 81 mg (74%). ¹H NMR δ 7.71 (s, 1H), 7.48 (s, 1H), 6.12 (q, *J* = 6.1 Hz, 1H), 3.42 (dq, *J* = 9.3, 7.0 Hz, 1H), 3.16 (dq, *J* = 9.4, 7.1 Hz, 1H), 2.34 (s, 3H), 2.31 (s, 3H), 1.77

(d, J = 6.2 Hz, 3H), 1.05 (t, J = 7.0 Hz, 3H). ¹³C NMR δ 145.8, 137.4, 133.6, 130.0, 118.8, 110.3, 86.4, 63.9, 20.8, 20.6, 20.1, 14.5. HRMS (ESI): Calcd. for C₁₂H₁₇N₃ONa (M+Na)⁺ 242.1269, found 242.1268.

5,6-dimethyl-1-(1-propoxypropyl)-1*H*-benzo[*d*][1,2,3]triazole (3i): Colorless oil. Yield: 86 mg (70%). ¹H NMR δ 7.75 (s, 1H), 7.49 (s, 1H), 5.86 (t, *J* = 6.8 Hz, 1H), 3.36 (dt, *J* = 9.2, 6.6 Hz, 1H), 3.13 (dt, *J* = 9.2, 6.7 Hz, 1H), 2.37 (s, 3H), 2.35 (s, 3H), 2.23 (td, *J* = 14.2, 7.2 Hz, 1H), 2.11 (td, *J* = 14.4, 7.3 Hz, 1H), 1.54-1.44 (m, 2H), 0.85 (t, *J* = 7.5 Hz, 3H), 0.79 (t, *J* = 7.4 Hz, 3H). ¹³C NMR δ 146.0, 137.4, 133.7, 130.2, 118.9, 110.5, 91.8, 70.5, 27.8, 22.3, 20.7, 20.2, 10.3, 9.2. HRMS (ESI): Calcd. for C₁₄H₂₁N₃ONa (M+Na)⁺ 270.1582, found 270.1570.

1-(1-butoxybutyl)-5,6-dimethyl-1*H*-benzo[*d*][1,2,3]triazole (3j): Colorless oil. Yield: 80 mg (58%). ¹H NMR δ 7.76 (s, 1H), 7.50 (s, 1H), 5.96 (t, J = 6.8 Hz, 1H), 3.40 (dt, J = 9.3, 6.5 Hz, 1H), 3.17 (dt, J = 9.3, 6.6 Hz, 1H), 2.39 (s, 3H), 2.37 (s, 3H), 2.25-2.15 (m, 1H), 2.10-2.01 (m, 1H), 1.49-1.35 (m, 3H), 1.31-1.14 (m, 3H), 0.89 (t, J = 7.4 Hz, 3H), 0.79 (t, J = 7.4 Hz, 3H). ¹³C NMR δ 145.9, 137.5, 133.8, 130.1, 118.9, 110.5, 90.4, 68.6, 36.5, 31.1, 20.8, 20.3, 19.0, 18.1, 13.5, 13.3. HRMS (ESI): Calcd. for C₁₆H₂₅N₃ONa (M+Na)⁺ 298.1895, found 298.1896.

5,6-dimethyl-1-(1-(pentyloxy)pentyl)-1*H*-benzo[*d*][1,2,3]triazole (3k): Colorless oil. Yield: 77 mg (51%). ¹H NMR δ 7.76 (s, 1H), 7.50 (s, 1H), 5.93 (t, *J* = 6.8 Hz, 1H), 3.39 (dt, *J* = 9.3, 6.5 Hz, 1H), 3.25-3.06 (m, 1H), 2.38 (s, 3H), 2.36 (s, 3H), 2.25-2.17 (m, 1H), 2.12-2.03 (m, 1H), 1.49-1.45 (m, 2H), 1.40-1.25 (m, 3H), 1.22-1.11 (m, 5H), 0.81 (t, *J* = 7.3 Hz, 3H), 0.78 (t, *J* = 6.9 Hz, 3H). ¹³C NMR δ 145.9, 137.4, 133.7, 130.1, 118.9, 110.5, 90.6, 68.8, 34.2, 28.7, 28.0, 26.8, 22.1, 21.9, 20.7, 20.2, 13.8, 13.7. HRMS (ESI): Calcd. for C₁₈H₂₉N₃ONa (M+Na)⁺ 326.2208, found 326.2211.

5,6-dimethyl-1-((trimethylsilyl)((trimethylsilyl)methoxy)methyl)-1*H*-benzo[*d*][1,2,3]triazole (31): White solid. Melting point: 114-115 °C. Yield: 110 mg (66%). ¹H NMR δ 7.77 (s, 1H), 7.40 (s, 1H), 5.56 (s, 1H), (3.40 and 2.56 (ABq, 2H, *J* = 12 Hz), 2.39 (s, 3H), 2.38 (s, 3H), 0.10 (s, 9H), -0.02 (s, 9H). ¹³C NMR δ 145.4, 137.1, 133.5, 132.2, 118.8, 110.5, 90.5, 65.3, 20.9, 20.3, -3.2, -3.3. HRMS (ESI): Calcd. for C₁₆H₃₀N₃OSi₂ (M+H)⁺ 336.1927, found 336.1931.

1-(1-ethoxyethyl)-5-methyl-1*H*-benzo[*d*][1,2,3]triazole (3m): Colorless oil. Yield: 64 mg (62%). (1:1 isomers). ¹H NMR δ 7.90 & 7.65 (d, J = 8.5 Hz, 1H), 7.80 & 7.53 (s, 1H), 7.28 & 7.18 (d, J = 8.5 Hz, 1H), 6.19 (q, J = 6.0 Hz, 2H), 3.52-3.45 (m, 2H), 3.27-3.17 (m, 2H), 2.51 & 2.49 (s, 3H), 1.84-1.82 (m, 6H), 1.14-1.11 & 1.11-1.07 (m, 3H). ¹³C NMR δ 147.4, 145.5, 138.0, 134.2, 131.6, 129.6, 129.5, 126.4, 119.5, 118.9, 110.6, 110.3, 86.9, 86.8, 64.3, 22.0, 21.4, 21.2, 21.1, 14.7. HRMS (ESI): Calcd. for $C_{11}H_{15}N_3ONa (M+Na)^+$ 228.1113, found 228.1112.

5-chloro-1-(1-ethoxyethyl)-1*H*-benzo[*d*][1,2,3]triazole (3n): Colorless oil. Yield: 73 mg (66%). (1:1 isomers). ¹H NMR δ 8.06-8.02 & 7.82-7.77 (m, 1H), 7.97 & 7.73 (dd, J = 8.8, 0.4 Hz, 1H), 7.43 & 7.33 (dd, J = 8.8, 1.8 Hz, 1H), 6.25-6.19 (m, 2H), 3.56-3.46 (m, 2H), 3.30-3.20 (m, 2H), 1.84 & 1.82 (s, 3H), 1.15 & 1.12 (t, J = 4.3 Hz, 3H). ¹³C NMR δ 147.4, 145.4, 133.8, 131.7, 130.1, 129.8, 128.4, 125.4, 121.0, 119.4, 112.1, 111.0, 64.6, 64.5, 21.3, 21.2, 14.7. HRMS (ESI): Calcd. for C₁₀H₁₃ClN₃O (M+H)⁺ 226.0747, found 226.0745.

1-(1-ethoxyethyl)-5-phenyl-1*H*-tetrazole (5a): Light yellow solid. Melting point: 197-198 °C. Yield: 77 mg (72%). ¹H NMR δ 8.37-7.81 (m, 2H), 7.56-7.29 (m, 3H), 6.01 (q, J = 6.0 Hz, 1H), 3.55 (dq, J = 9.4, 7.0 Hz, 1H), 3.38 (dq, J = 9.4, 7.0 Hz, 1H), 1.84 (d, J = 6.0 Hz, 3H), 1.11 (t, J = 7.0 Hz, 3H). ¹³C NMR δ 165.2, 130.4, 128.8, 127.3, 126.9, 88.9, 65.3, 20.8, 14.6. HRMS (ESI): Calcd. for C₁₁H₁₄N₄ONa (M+Na)⁺ 241.1065, found 241.1064.

5-phenyl-1-(1-propoxypropyl)-1*H*-tetrazole (5b): Colorless oil. Yield: 79 mg (64%). ¹H NMR δ 8.25- 8.11 (m, 2H), 7.54 - 7.43 (m, 3H), 5.81 (t, *J* = 6.7 Hz, 1H), 3.50 (dt, *J* = 9.3, 6.7 Hz, 1H), 3.35 (dt, *J* = 9.3, 6.6 Hz, 1H), 2.37-2.19 (m, 2H), 1.64-1.50 (m, 2H), 0.95 (t, *J* = 7.5 Hz, 3H), 0.87 (t, *J* = 7.4 Hz, 3H). ¹³C NMR δ 165.2, 130.3, 128.8, 127.4, 126.9, 94.0, 71.6, 27.8, 22.3, 10.3, 8.9. HRMS (ESI): Calcd. for C₁₃H₁₈N₄ONa (M+Na)⁺ 269.1378, found 269.1373.

1-(1-butoxybutyl)-5-phenyl-1*H*-tetrazole (5c): Colorless oil. Yield: 71 mg (53%). ¹H NMR δ 8.20 (dd, J = 7.6, 1.9 Hz, 2H), 7.48 (dd, J = 6.0, 5.1 Hz, 3H), 5.89 (t, J = 6.7 Hz, 1H), 3.53 (dt, J = 9.3, 6.6 Hz, 1H), 3.37 (dt, J = 9.4, 6.5 Hz, 1H), 2.33-2.24 (m, 1H), 2.22-2.11 (m, 1H), 1.57-1.43 (m, 3H), 1.39-1.23 (m, 3H), 0.96 (t, J = 7.4 Hz, 3H), 0.86 (t, J = 7.4 Hz, 3H). ¹³C NMR δ 165.2, 130.3, 128.8, 127.4, 126.9, 92.6, 69.6, 36.4, 31.1, 19.0, 17.9, 13.6, 13.4. HRMS (ESI): Calcd. for C₁₅H₂₂N₄ONa (M+Na)⁺ 297.1691, found 297.1689.

5-(4-chlorophenyl)-1-(1-ethoxyethyl)-1*H***-tetrazole (5d):** Colorless oil. Yield: 70 mg (56%). ¹H NMR δ 8.16-8.07 (m, 2H), 7.49-7.41 (m, 2H), 6.07 (q, *J* = 6.0 Hz, 1H), 3.61 (dq, *J* = 9.4, 7.0 Hz, 1H), 3.44 (dq, *J* = 9.4, 7.0 Hz, 1H), 1.89 (d, *J* = 6.0 Hz, 3H), 1.17 (t, *J* = 7.0 Hz, 3H). ¹³C NMR δ 164.3, 136.4, 129.1, 128.2, 125.8, 89.0, 65.3, 20.8, 14.6. HRMS (ESI): Calcd. for C₁₁H₁₃ClN₄ONa (M+Na)⁺ 275.0676, found 275.0673.

5-(4-chlorophenyl)-1-(1-propoxypropyl)-1*H***-tetrazole (5e):** Colorless oil. Yield: 75 mg (54%). ¹H NMR δ 8.22-8.00 (m, 2H), 7.60-7.32 (m, 2H), 5.80 (t, *J* = 6.6 Hz, 1H), 3.50 (dt, *J* = 9.3, 6.7 Hz, 1H), 3.35 (dt, *J* = 9.3, 6.6 Hz, 1H), 2.38- 2.15 (m, 2H), 1.61-1.54 (m, 2H), 0.96 (t, *J* = 7.5 Hz, 3H), 0.88 (t, *J* = 7.4 Hz, 3H). ¹³C NMR δ 164.4, 136.4, 129.2, 128.3, 125.9, 94.2, 71.7, 27.9, 22.4, 10.3, 8.9. LRMS (ESI): Calcd. For C₁₃H₁₈ClN₄O [M+H]⁺ 281.12, found: 281.20.

1-(1-butoxybutyl)-5-(4-chlorophenyl)-1*H*-tetrazole (5f): Colorless oil. Yield: 76 mg (49%). ¹H NMR δ 8.13 (d, J = 8.5 Hz, 2H), 7.46 (d, J = 8.5 Hz, 2H), 5.88 (t, J = 6.7 Hz, 1H), 3.53 (dt, J = 9.4, 6.6 Hz, 1H), 3.37 (dt, J = 9.4, 6.5 Hz, 1H), 2.33-2.23 (m, 1H), 2.19-2.10 (m, 1H), 1.56-1.41 (m,3H), 1.36 -1.23 (m, 3H), 0.96 (t, J = 7.4 Hz, 3H), 0.85 (t, J = 7.4 Hz, 3H). ¹³C NMR δ 164.4, 136.4, 129.1, 128.2, 125.9, 92.7, 69.7, 36.4, 31.1, 19.0, 17.9, 13.6, 13.4. HRMS (ESI): Calcd. for C₁₅H₂₁ClN₄ONa (M+Na)⁺ 331.1302, found 331.1301.

5-(4-bromophenyl)-1-(1-ethoxyethyl)-1*H*-tetrazole (5g): Colorless oil. Yield: 82 mg (56%). ¹H NMR δ 8.05 (d, *J* = 8.5 Hz, 2H), 7.61 (d, *J* = 8.5 Hz, 2H), 6.06 (q, *J* = 6.0 Hz, 1H), 3.60 (dq, *J* = 9.3, 7.0 Hz, 1H), 3.44 (dq, *J* = 9.4, 7.0 Hz, 1H), 1.88 (d, *J* = 6.0 Hz, 3H), 1.17 (t, *J* = 7.0 Hz, 3H). ¹³C NMR δ 164.4, 132.0, 128.4, 126.3, 124.7, 65.3, 20.8, 14.6. HRMS (ESI): Calcd. for C₁₁H₁₄BrN₄O (M+H)⁺ 297.0351, found 297.0348.

5-(4-bromophenyl)-1-(1-propoxypropyl)-1*H***-tetrazole (5h):** Colorless oil. Yield: 72 mg (45%). ¹H NMR δ 8.07 (d, *J* = 8.6 Hz, 2H), 7.63 (d, *J* = 8.6 Hz, 2H), 5.80 (t, *J* = 6.6 Hz, 1H), 3.49 (dt, *J* = 9.3, 6.7 Hz, 1H), 3.35 (dt, *J* = 9.3, 6.6 Hz, 1H), 2.35-2.19 (m, 2H), 1.60-1.54 (m, 2H), 0.95 (t, *J* = 7.5 Hz, 3H), 0.87 (t, *J* = 7.4 Hz, 3H). ¹³C NMR δ 164.5, 132.1, 128.5, 126.4, 124.7, 94.1, 71.7, 27.9, 22.3, 10.3, 8.9. HRMS (ESI): Calcd. for C₁₃H₁₈BrN₄O (M+H)⁺ 325.0664, found 325.0669.

1-(1-ethoxyethyl)-5-(4-fluorophenyl)-1*H*-tetrazole (5i): Yellow solid. Melting point: 199-200 °C. Yield: 76 mg (65%). ¹H NMR δ 8.31-8.13 (m, 2H), 7.22-7.09 (m,2H), 6.07 (q, J = 6.0 Hz, 1H), 3.62 (dq, J = 9.4, 7.0 Hz, 1H), 3.45 (dq, J = 9.4, 7.0 Hz, 1H), 1.90 (d, J = 6.0 Hz, 3H), 1.19 (t, J = 7.0 Hz, 3H). ¹³C NMR δ 165.3&162.8 (d, J = 250 Hz, CF), 164.5, 129.0 (d, J = 8 Hz), 123.6 (d, J = 4 Hz), 116.0 (d, J = 22 Hz), 88.9, 65.3, 20.8, 14.6. HRMS (ESI): Calcd. for C₁₁H₁₄FN₄O (M+H)⁺ 237.1152, found 237.1134.

5-(4-fluorophenyl)-1-(1-propoxypropyl)-1*H*-tetrazole (5j): Yellow solid. Melting point: 183-184 °C. Yeild: 67 mg (52%). ¹H NMR δ 8.19 (dd, *J* = 8.8, 5.4 Hz, 2H), 7.24-7.12 (m, 2H), 5.80 (t, *J* = 6.6 Hz, 1H), 3.49 (dt, *J* = 9.3, 6.7 Hz, 1H), 3.35 (dt, *J* = 9.3, 6.6 Hz, 1H), 2.35-2.19 (m, 2H), 1.62-1.52 (m, 2H), 0.95 (t, *J* = 7.5 Hz, 3H), 0.87 (t, *J* = 7.4 Hz, 3H). ¹³C NMR δ 165.3&162.8 (d, *J* = 250 Hz, CF), 164.5, 129.0 (d, *J* = 9 Hz), 123.7 (d, *J* = 4 Hz), 116.0 (d, *J* = 22Hz), 94.1, 71.6, 27.9, 22.3, 10.3, 8.9. HRMS (ESI): Calcd. for C₁₃H₁₇FN₄ONa (M+Na)⁺ 287.1284, found 287.1288.

1-(1-ethoxyethyl)-5-*p***-tolyl-1***H***-tetrazole (5k):** Colorless oil. Yield: 70 mg (61%). ¹H NMR δ 8.07 (d, J = 8.2 Hz, 2H), 7.29 (d, J = 7.9 Hz, 2H), 6.06 (q, J = 6.0 Hz, 1H), 3.61 (dq, J = 9.4, 7.0 Hz, 1H), 3.44 (dq, J = 9.4, 7.0 Hz, 1H), 2.41 (s, 3H), 1.89 (d, J = 6.0 Hz, 3H), 1.17 (t, J = 7.0 Hz, 3H). ¹³C NMR δ 165.3, 140.5, 129.5, 126.8, 124.5, 88.7, 65.2, 21.4, 20.8, 14.6. HRMS (ESI): Calcd. for C₁₂H₁₇N₄O (M+H)⁺ 233.1402, found 233.1390.

1-(1-propoxypropyl)-5-*p*-tolyl-1*H*-tetrazole (5l): Colorless oil. Yield: 58 mg (46%). ¹H NMR δ 8.08 (d, *J* = 8.2 Hz, 2H), 7.29 (d, *J* = 8.0 Hz, 2H), 5.79 (t, *J* = 6.7 Hz, 1H), 3.49 (dt, *J* = 9.3, 6.7 Hz, 1H), 3.35 (dt, *J* = 9.3, 6.6 Hz, 1H), 2.41 (s, 3H), 2.35-2.20 (m, 2H), 1.62-1.52 (m, 2H), 0.95 (t, *J* = 7.5 Hz, 3H), 0.87 (t, *J* = 7.4 Hz, 3H). ¹³C NMR δ 165.3, 140.5, 129.5, 126.8, 124.6, 93.9, 71.5, 27.8, 22.3, 21.4, 10.3, 8.9. HRMS (ESI): Calcd. for C₁₄H₂₁N₄O (M+H)⁺ 261.1715, found 261.1714.

1-(1-ethoxyethyl)-5-*m***-tolyl-1***H***-tetrazole (5m):** Yellow solid. Melting point: 121-122 °C. Yield: 68 mg (60%). ¹H NMR δ 8.04-7.96 (m, 2H), 7.38 (t, J = 7.6 Hz, 1H), 7.28 (d, J = 7.6 Hz, 1H), 6.08 (q, J = 6.0 Hz, 1H), 3.61 (dq, J = 9.4, 7.0 Hz, 1H), 3.45 (dq, J = 9.4, 7.0 Hz, 1H), 2.43 (s, 3H), 1.91 (d, J = 6.0 Hz, 3H), 1.18 (t, J = 7.0 Hz, 3H). ¹³C NMR δ 165.4, 138.6, 131.1, 128.8, 127.5, 127.2, 124.1, 88.8, 65.3, 21.3, 20.8, 14.6. HRMS (ESI): Calcd. for C₁₂H₁₇N₄O (M+H)⁺ 233.1402, found 233.1390.

1-(1-propoxypropyl)-5-*m***-tolyl-1***H***-tetrazole (5n):** Yellow solid. Melting point: 110-112 °C. Yield: 70 mg (54%). ¹H NMR δ 8.05-7.97 (m, 2H), 7.38 (t, J = 7.6 Hz, 1H), 7.28 (d, J = 7.6 Hz, 1H), 5.80 (t, J = 6.7 Hz, 1H), 3.49 (dt, J = 9.3, 6.7 Hz, 1H), 3.35 (dt, J = 9.3, 6.6 Hz, 1H), 2.43 (s, 3H), 2.34-2.22 (m, 2H), 1.62-1.54 (m, 2H), 0.95 (t, J = 7.5 Hz, 3H), 0.88 (t, J = 7.4 Hz, 3H). ¹³C NMR δ 165.4, 138.6, 131.1, 128.8, 127.5, 127.2, 124.1, 94.0, 71.6, 27.9, 22.4, 21.3, 10.3, 9.0. HRMS (ESI): Calcd. for C₁₄H₂₁N₄O (M+H)⁺ 261.1715, found 261.1717.

1-(1-ethoxyethyl)-5-*o***-tolyl-1***H***-tetrazole (50):** Colorless oil. Yield: 73 mg (63%). ¹H NMR δ 8.05 (d, *J* = 7.6 Hz, 1H), 7.37-7.29 (m, 3H), 6.09 (q, *J* = 6.0 Hz, 1H), 3.63 (dq, *J* = 9.4, 7.0 Hz, 1H), 3.47 (dq, *J* = 9.4, 7.0 Hz, 1H), 2.64 (s, 3H), 1.91 (d, *J* = 6.0 Hz, 3H), 1.18 (t, *J* = 7.0 Hz, 3H). ¹³C NMR δ 165.5, 137.4, 131.3, 129.9, 129.5, 126.4, 125.9, 88.7, 65.2, 21.6, 20.7, 14.6. HRMS (ESI): Calcd. for C₁₂H₁₇N₄O (M+H)⁺ 233.1402, found 233.1398.

1-(1-propoxypropyl)-5-*o***-tolyl-1***H***-tetrazole (5p): Colorless oil. Yield: 64 mg (51%). ¹H NMR \delta 8.08-8.03 (m, 1H), 7.38-7.27 (m, 3H), 5.82 (t, J = 6.6 Hz, 1H), 3.52 (dt, J = 9.3, 6.6 Hz, 1H), 3.36 (dt, J = 9.3, 6.6 Hz, 1H), 2.64 (s, 3H), 2.37 -2.19 (m, 2H), 1.60-1.50 (m, 2H), 0.96 (t, J = 7.5 Hz, 3H), 0.87 (t, J = 7.4 Hz, 3H). ¹³C NMR \delta 165.5, 137.4, 131.3, 129.8, 129.4, 126.4, 125.9, 93.8, 71.4, 27.7, 22.3, 21.6, 10.2, 8.9. HRMS (ESI): Calcd. for C₁₄H₂₁N₄O (M+H)⁺ 261.1715, found 261.1719.**

1-(1-ethoxyethyl)-5-(4-nitrophenyl)-1*H*-tetrazole (5q): Yellow solid. Melting point: 84-85 °C. Yield: 83 mg (63%). ¹H NMR δ 8.36 (q, J = 8.9 Hz, 4H), 6.12 (q, J = 6.0 Hz, 1H), 3.64 (dq, J = 14.1, 7.1 Hz, 1H), 3.47 (dq, J = 14.1, 7.0 Hz, 1H), 1.92 (d, J = 6.0 Hz, 3H), 1.19 (t, J = 7.0 Hz, 3H). ¹³C NMR δ 163.4, 148.9, 133.2, 127.8, 124.1, 89.4, 65.5, 20.8, 14.6. LRMS (ESI): Calcd. For C₁₁H₁₄N₅O₃ [M+H]⁺ 264.11, found: 264.20.

5-(2,3-dichlorophenyl)-1-(1-ethoxyethyl)-1*H***-tetrazole (5r):** Yellow solid. Melting point: 159-160 °C. Yield: 47 mg (34%). ¹H NMR δ 7.84 (dd, J = 7.8, 1.6 Hz, 1H), 7.60 (dd, J = 8.0, 1.6 Hz, 1H), 7.33 (t, J = 7.9 Hz, 1H), 6.12 (q, J = 6.0 Hz, 1H), 3.65 (dq, J = 9.4, 7.0 Hz, 1H), 3.49 (dq, J = 9.4, 7.0 Hz, 1H), 1.93 (d, J = 6.0 Hz, 3H), 1.19 (t, J = 7.0 Hz, 3H). ¹³C NMR δ 163.0, 134.5, 132.0, 131.8, 129.7, 128.7, 127.3, 89.3, 65.5, 20.8, 14.6. HRMS (ESI): Calcd. for C₁₁H₁₃Cl₂N₄O (M+H)⁺ 287.0466, found 287.0463.

5-(2,4-dichlorophenyl)-1-(1-ethoxyethyl)-1*H***-tetrazole (5s):** Colorless oil. Yield: 54 mg (39%). ¹H NMR δ 7.95 (d, *J* = 8.4 Hz, 1H), 7.56 (d, *J* = 2.0 Hz, 1H), 7.38 (dd, *J* = 8.4, 2.1 Hz, 1H), 6.11 (q, *J* = 6.0 Hz, 1H), 3.64 (dq, *J* = 9.4, 7.0 Hz, 1H), 3.48 (dq, *J* = 9.4, 7.0 Hz, 1H), 1.92 (d, *J* = 6.0 Hz, 3H), 1.19 (t, *J* = 7.0 Hz, 3H). ¹³C NMR δ 161.6, 135.6, 132.9, 131.1, 129.7, 126.3, 124.1, 88.3, 76.3, 76.0, 75.7, 64.5, 19.8, 13.6. HRMS (ESI): Calcd. for C₁₁H₁₃Cl₂N₄O (M+H)⁺ 287.0466, found 287.0463.

9-(1-ethoxyethyl)-9*H***-carbazole (7a):** Yellow solid. Melting point: 75-76 °C. Yield: 57 mg (48%). ¹H NMR δ 8.09 (d, *J* = 7.8 Hz, 2H), 7.64 (d, *J* = 8.3 Hz, 2H), 7.43 (t, *J* = 7.2 Hz, 2H), 7.24 (t, *J* = 7.1 Hz, 2H), 5.99 (q, *J* = 6.1 Hz, 1H), 3.44-3.37 (m, 1H), 3.36-3.27 (m, 1H), 1.78 (d, *J* = 6.1 Hz, 3H), 1.15 (t, *J* = 7.0 Hz, 3H). ¹³C NMR δ 139.1, 125.6, 123.5, 120.2, 119.3, 110.5, 82.2, 63.4, 20.2, 14.9. HRMS (ESI): Calcd. for C₁₆H₁₇NONa (M+Na)⁺ 262.1208, found 262.1215.

3-chloro-1-(1-ethoxyethyl)-1*H***-indazole (7b):** Colorless oil. Yield: 18 mg (16%). ¹H NMR δ 7.68 (dd, *J* = 9.4, 1.4 Hz, 2H), 7.46-7.38 (m, 1H), 7.22 (dd, *J* = 11.2, 4.1 Hz, 1H), 5.81 (q, *J* = 6.1 Hz, 1H), 3.47 (dq, *J* = 14.0, 7.0 Hz, 1H), 3.31 (dq, *J* = 14.1, 7.1 Hz, 1H), 1.77 (d, *J* = 6.1 Hz, 3H), 1.14 (t, *J* = 7.0 Hz, 3H). ¹³C NMR δ 139.7, 133.3, 127.5, 122.0, 121.7, 119.8, 110.9, 87.2, 63.8, 20.8, 14.8. HRMS (ESI): Calcd. for C₁₁H₁₃ClN₂ONa (M+Na)⁺ 247.0614, found 247.0624.

1-(1-ethoxyethyl)-3-methyl-6-nitro-1*H***-indazole (7c):** Yellow oil. Yield: 32 mg (20%). ¹H NMR δ 8.57 (s, 1H), 7.99 (dd, *J* = 8.8, 1.5 Hz, 1H), 7.74 (d, *J* = 8.8 Hz, 1H), 5.86 (q, *J* = 6.0 Hz, 1H), 3.48 (dq, *J* = 14.1, 7.0 Hz, 1H), 3.28 (dq, *J* = 14.3, 7.1 Hz, 1H),

2.60 (s, 3H), 1.78 (d, J = 6.0 Hz, 3H), 1.15 (t, J = 7.0 Hz, 3H). ¹³C NMR δ 146.5, 142.3, 137.8, 127.4, 121.1, 115.1, 107.0, 87.2, 64.1, 21.1, 14.8, 11.8. HRMS (ESI): Calcd. for C₁₂H₁₅N₃O₃Na (M+Na)⁺ 272.1011, found 272.1010.

Radical-trapping procedure. To a Schlenk tube equipped with a magnetic stir bar was added 1*H*-Benzotriazole (60 mg, 0.5 mmol) in 3 mL of ethanol. Then TBHP (5.5 M in decane, 1 mmol, 0.2 mL) and 2,2,6,6-tetramethyl-1-piperidinyloxy (TEMPO) (1.5 mol) were added before the tube was sealed and the reaction mixture was stirred at the 120 °C for 12 h. After required reaction time, the mixture was cooled down to room temperature. There is no desired hemiaminal product, only a proton was captured and detected by GC-MS.

ASSOCIATED CONTENT

Supporting Information:

¹H and ¹³C spectra of all new compounds. This material is available free of charge via the Internet at http://pubs.acs.org/

AUTHOR INFORMATION

Corresponding Author

*E-mail: yiwang@nju.edu.cn

Notes

The authors declare no competing financial interest.

ACKNOWLEDGMENT

We thank Prof Hon Wai Lam for helpful mechanistic discussion. We also gratefully acknowledge the financial support from the National Natural Science Foundation of China (No. 21402088 and No. 21472082) and the Fundamental Research Funds for the Central Universities (No. 2062014749).

REFERENCES

(1) Rossello, A.; Bertini, S.; Lapucci, A.; Macchia, M.; Martinelli, A.; Rapposelli, S.; Herreros, E.; Macchia, B. J. Med. Chem. 2002, 45, 4903.

(2) Zhang, H. Z.; Damu, G. L. V.; Cai, G. X.; Zhou, C. H. Eur. J. Med. Chem. 2013, 64, 329.

- (3) Giornal, F.; Pazenok, S.; Rodefeld, L.; Lui, N.; Vors, J. P.; Leroux, F. R. J. Fluorine Chem. 2013, 152, 2.
- (4) Ren, Y.; Zhang, L.; Zhou, C. H.; Geng, R. X. Med. Chem. 2014, 4, 640.
- (5) Guillena, G.; Ramon, D. J.; Yus, M. Chem. Rev. 2010, 110, 1611.

ACS Paragon Plus Environment

The Journal of Organic Chemistry

- (6) Dobereiner, G. E.; Crabtree, R. H. Chem. Rev. 2010, 110, 681.
- (7) Wetzel, A.; Wöckel, S., Schelwies, M.; Brinks, M. K.; Rominger, F.; Hofmann, P.; Limbach, M. Org. Lett. 2013, 15, 266.
- (8) Shieh, W. C.; Lozanov, M.; Repic, O. Tetrahedron Lett. 2003, 44, 6943.
- (9) Milen, M.; Grun, A.; Balint, E.; Dancso, A.; Keglevich, G. Synth. Commun. 2010, 40, 2291.
- (10) Rajamanickam, S.; Majji, G.; Santra, S. K.; Patel, B. K. Org. Lett., 2015, 17, 5586.
- (11) Yang, Q. J.; Choy, P. Y.; Fu, W. C.; Fan, B. M.; Kwong, F. Y. J. Org. Chem. 2015, 80, 11193.
- (12) Fructos, M. R.; Trofimenko, S.; Diaz-Requejo, M. Mar.; Perez, P. J. J. Am. Chem. Soc. 2006, 128, 11784.
- (13) Zhu, K. Q.; Wang, L.; Chen, Q.; He, M. Y. Tetrahedron Lett. 2015, 56, 4943.
- (14) Buslova, I.; Hua, X. L. Adv. Synth. Catal. 2014, 356, 3325.
- (15) Dian, L. Y.; Wang, S. S.; Zhang-Negrerie, D. Z.; Du, Y. F.; Zhao, K. Chem. Commun. 2014, 50, 11738.
- (16) Sun, K.; Wang, X.; Li, G.; Zhu, Z. H.; Jiang, Y. Q.; Xiao, B. B. Chem. Commun. 2014, 50, 12880.
- (17) Feng, J.; Lv, M. F.; Lu, G. P.; Cai, C. Org. Chem. Front. 2015, 2, 60.
- (18) Wang, L.; Zhu, K. Q.; Wu, W. T.; Chen, Q.; He, M. Y. Catal. Sci. Technol. 2015, 5, 2891.
- (19) He, L.; Yu, J.; Zhang, J.; Yu, X. Q. Org. Lett. 2007, 9, 2277.
- (20) Zhou, L. L.; Tang, S.; Qi, X. T.; Lin, C. T.; Liu, K.; Liu, C.; Lan, Y.; Lei, A. W. Org. Lett. 2014, 16, 3404.
- (21) Zhang, C.; Liu, C. M.; Shao, Y.; Bao, X. G.; Wan, X. B. Chem. -Eur. J. 2013, 19, 17917.
- (22) Wan, M.; Meng, Z. L.; Lou, H. X.; Liu, L. Angew. Chem., Int. Ed. 2014, 53, 13845.
- (23) Wang, X. B.; Pan, Y. P.; Huang, K. W.; Lai, Z. P. Org. Lett., 2015, 17, 5630.
- (24) Pan, S. G.; Liu, J. H.; Li, H. R.; Wang, Z. Y.; Guo, X. W.; Li, Z. P. Org. Lett. 2010, 12, 1932.
- (25) Aruri, H.; Singh, U.; Sharma, S.; Gudup, S.; Bhogal, M.; Kumar, S.; Singh, D.; Gupta, V. K.; Kant, R.; Vishwakarma, R. A.; Singh, P. P. J.
- Org. Chem. 2015, 80, 1929.
- (26) Meng, Y.; Guo, L. N.; Wang, H.; Duan, X. H. Chem. Commun. 2013, 49, 7540.
- (27) He, T.; Yu, L.; Zhang, L.; Wang, L.; Wang, M. Org. Lett. 2011, 13, 5016.
- (28) Zhao, Z. X.; Xue, W. H.; Gao, Y. X.; Tang, G.; Zhao, Y. F. Chem. -Asian. J. 2013, 8, 713.
- (29) Cheng, J. K.; Loh, T. P. J. Am. Chem. Soc. 2015, 137, 42.
- (30) Takemura, N.; Kuninobu, Y.; Kanai, M. Org. Lett. 2013, 15, 844.
- (31) Jiang, H. L.; Xie, J.; Lin, A. J.; Cheng, Y. X.; Zhu, C. J. RSC Advances. 2012, 2, 10496.