ChemComm

This article is part of the

Frontiers in Molecular Main Group Chemistry web themed issue

Guest editors: Manfred Scheer and Richard Layfield

All articles in this issue will be gathered together online at

www.rsc.org/cc/maingroup

Cite this: Chem. Commun., 2012, 48, 1308–1310

www.rsc.org/chemcomm

COMMUNICATION

Efficient generation of stable adducts of Si(II) dihydride using a donor-acceptor approach[†][‡]

S. M. Ibrahim Al-Rafia, Adam C. Malcolm, Robert McDonald, Michael J. Ferguson and Eric Rivard*

Received 16th November 2011, Accepted 7th December 2011 DOI: 10.1039/c2cc17101e

A stable Si(π) dihydride complex, IPr·SiH₂·BH₃ (IPr = [(HCNDipp)₂C:]; Dipp = 2,6^{-*i*}Pr₂C₆H₃), was synthesized and preliminary reactivity involving this source of encapsulated silylene is reported.

The ability to intercept reactive main group species in the presence of strong electron pair donors, such as N-heterocyclic carbenes (NHCs), has had a profound influence in advancing modern inorganic chemistry.¹ Motivated by these break-throughs, our group has recently employed a related donor–acceptor strategy² to access stable adducts of :GeH₂ and :SnH₂,³ and various inorganic congeners of ethylene, H₂SiEH₂ (E = Ge and Sn).³ In this communication, we introduce an efficient route to a stable bis adduct of the highly sought-after parent silylene, :SiH₂,^{4,5} and explore initial coordination chemistry involving this novel Group 14 dihydride.

Interest in :SiH₂ stems from its postulated existence during the thermolytic synthesis of Si films from SiH₄,⁶ while metallosilylenes (M=SiR₂) have been implicated as intermediates in hydrosilane polymerization and in the synthesis of halomethylsilanes.⁷ Of particular relevance to the title work, Robinson and coworkers have synthesized a compound bearing a formal :SiH₂ unit, IPr·*SiH*₂·BH₂–SiH(B₃H₇)·IPr, *via* a complex borane-induced Si–Si cleavage reaction involving the disilene bis adduct IPr·Si=Si·IPr (IPr = [(HCNDipp)₂C:]; Dipp = $2,6-^{i}Pr_{2}C_{6}H_{3}$).⁸

Previously we showed that the germylene donor-acceptor complex, $IPr \cdot GeH_2 \cdot BH_3$ (1), could be prepared from the reaction of the germanium(II) halide precursor, $IPr \cdot GeCl_2$, with 2 equiv. of $Li[BH_4]$.^{3a} However a later attempt by Roesky and coworkers to apply a similar strategy toward the synthesis of the Si(II) analogue $IPr \cdot SiH_2 \cdot BH_3$ (2) was not successful. Specifically, treatment of $IPr \cdot SiCl_2^{1g}$ with $Li[BH_4]$ in THF resulted in an unusual LiH elimination reaction and the

formation of the halosilylene adduct IPr·SiCl₂·BH₃ in high yield.⁹ The reluctance of the Si–Cl bonds in IPr·SiCl₂·BH₃ to undergo hydride replacement chemistry with Li[BH₄] mirrored our observations with the silagermene adduct IPr·Cl₂SiGeCl₂·W(CO)₅, wherein Si–H bond formation required the use of Li[AlH₄] as a hydride source.^{3d}

Our initial attempts to generate IPr·SiH₂·BH₃ (2) from the reaction of IPr·SiCl₂·BH₃ with Li[AlH₄] in ethereal solvents led to the formation of the known alane, IPr·AlH₃, as a major product,¹⁰ with only trace amounts (<5%) of the desired silylene adduct 2 observed by NMR spectroscopy. In order to mitigate IPr·AlH₃ formation, we decided to repeat the hydride transfer reaction in a solvent mixture of lower polarity (toluene/ether mixture) while concurrently decreasing the reaction parameters led to the clean formation of the desired Si(II) dihydride adduct IPr·SiH₂·BH₃ (2) as a colorless solid in a moderate isolated yield of 55% (Scheme 1).

The structure of IPr·SiH₂·BH₃ (**2**) is presented in Fig. 1,¹¹ and bears geometric features that closely resemble those found within the germanium congener IPr·GeH₂·BH₃ (**1**).^{3a} The dative C_{Ipr} -Si bond length in **2** [1.9284(15) Å] is slightly shorter than the related C_{Ipr} -Si interactions found within the SiH₂ adduct, IPr·SiH₂·BH₂-SiH(B₂H₇)·IPr [1.934(4) and 1.944(4) Å], and in IPr·SiCl₂·BH₃ [1.937(2) Å].^{8,9} The adjacent Si-B distance in **2** [1.992(2) Å] lies in the range reported for previously known BH₃ adducts involving formal Si(II) donor sites [1.965(2) to 1.996(4) Å].^{4b,8,9} Each of the hydrogen atoms bound to Si and B in **2** were located in the electron difference map and refined isotropically to expected Si–H and B–H distances.

Consistent with the abovementioned crystallographic data, the IR spectrum of IPr·SiH₂·BH₃ (2) exhibited a sharp band at 2096 cm⁻¹ due to coincident ν_{sym} and ν_{asym} Si–H stretching modes, along with diagnostic $\nu_{(10/11}^{10/11}B-H)$ stretching vibrations

Scheme 1 Synthesis of the Si(II) dihydride adducts 2 and 3.

Department of Chemistry, University of Alberta, Edmonton, Alberta, Canada T6G 2G2. E-mail: erivard@ualberta.ca;

Tel: +1 780-492-4255

[†] This article is part of the ChemComm "Frontiers in Molecular Main Group Chemistry" web themed issue.

[‡] Electronic supplementary information (ESI) available: Full experimental details. CCDC 853340–853342 (**2–4**). For ESI and crystallographic data in CIF or other electronic format see DOI: 10.1039/ c2cc17101e

Fig. 1 Thermal ellipsoid plot (30% probability) of $IPr \cdot SiH_2 \cdot BH_3$ (2). IPr-bound hydrogen atoms are omitted for clarity. Selected bond lengths [Å] and angles [°]: C(1)–Si 1.9284(15), Si–B 1.992(2), Si–H 1.409(18) and 1.439(18), B–H 1.02(2), 1.02(3) and 1.12(2); C(1)–Si–B 112.11(8), H–Si–H 102.0(10).

from 2238 to 2345 cm⁻¹. The ²⁹Si{¹H} NMR spectrum featured a well-resolved quartet pattern centered at -55.6 ppm [¹J_{Si-B} = 46 Hz], while the -*B*H₃ acceptor unit in **2** appeared as a quartet in the ¹¹B NMR spectrum [δ = -46.2; ¹J_{BH} = 93 Hz]. The isotopomer IPr·SiD₂·BH₃ (**2D**) was also synthesized and yielded a ν (Si-D) IR band at 1522 cm⁻¹, congruent with the expected change in Si-H/D harmonic oscillator strength on going from **2** to **2D**. Theoretical calculations on the silylene–borane ImMe₂·SiH₂·BH₃ {ImMe₂ = [(HCNMe)₂C:]}¹¹ gave optimized structural and IR spectroscopic parameters that closely matched those of **2**. Moreover, NBO analysis indicated the presence of a polar dative C_{Ipr}-Si interaction [77% bonding density on C] and a relatively non-polar Si-B single bond [Wiberg Bond Index (WBI) = 0.989].

The SiH₂ complex **2** appears to be significantly more stable than its Ge analogue IPr·GeH₂·BH₃ (1). For example, IPr·SiH₂·BH₃ (**2**) is stable up to *ca.* 230 °C in the solid state and remains unaltered in hot toluene (100 °C, 12 h). By comparison, complex **1** has a much lower T_{dec} of 130 °C in the solid state, while decomposition to Ge metal, H₂ and IPr-BH₃ is rapid at *ca.* 100 °C in toluene.^{3a} Moreover, IPr·SiH₂· BH₃ is unreactive towards Cy₃P at room temperature, whereas the GeH₂ adduct **1** reacts with Cy₃P to give the known phosphine–borane adduct Cy₃P·BH₃, IPr·BH₃ and the imidazole aminal [(HCNDipp)₂CH₂] as soluble products (*ca.* 25% conversion after 24 h).¹¹ These observations are in line with the expected increase in both the electron donating and accepting abilities of the SiH₂ unit relative to GeH₂,^{5b} leading to a higher degree of stability for IPr·SiH₂·BH₃.

An interesting silylene group transfer reaction was noted when $IPr \cdot SiH_2 \cdot BH_3$ (2) was combined with $THF \cdot W(CO)_5$. In this process the $IPr \cdot SiH_2$ unit remained intact to give a thermally stable tungsten complex $IPr \cdot SiH_2 \cdot W(CO)_5$ (3) in a 66% yield with concomitant loss of $THF \cdot BH_3$ (Scheme 1). The NMR spectroscopic and X-ray crystallographic data¹¹ (Fig. 2) for 3 were in accordance with the formation of a tungstenbound silylene. The IR spectrum of 3 afforded sharp bands at

Fig. 2 Thermal ellipsoid plot (30% probability) of $IPr\cdot SiH_2 \cdot W(CO)_5$ (3). IPr-bound hydrogen atoms and hexane solvent are omitted for clarity; Si–H distances were constrained to equal values during the refinement. Selected bond lengths [Å] and angles [°]: C(6)–Si 1.928(13), Si–W 2.573(4), W–C(1) 1.966(15), W–C(2–5) 1.997(16) to 2.059(17), Si–H 1.32(9); C(6)–Si–W 121.4(4), Si–W–C(1) 176.2(4), Si–W–C(2–5) 85.0(4) to 91.6(4).

2086 and 2107 cm⁻¹ that were assigned as symmetric and asymmetric Si-H stretching modes, respectively, on the basis of DFT studies involving the model complex, ImMe₂·SiH₂· W(CO)₅.¹¹ The frequencies of the Si-H IR vibrations in 3 were of similar value as in the Si(II) hydride adduct, [^tBuNC(Ph)N^tBu]SiH BH₃ [2107 cm⁻¹].^{4b} The trans disposed carbonyl ligand in 3 (relative to the Si donor) gave a characteristic A_1 vibration at 2044 cm⁻¹; this value is slightly lower than the related stretching frequencies in the heavier element analogues IPr·EH₂·W(CO)₅ (E = Ge and Sn; ν (CO)_{trans} = 2047 cm⁻¹ in both cases).^{3b} These data suggest that the IPr· SiH₂ group is a marginally stronger electron donor than either of the Ge and Sn derivatives. Of further note, West's N-heterocyclic silylene [(HCN^tBu)₂Si:] does not form an adduct with BH₃, thus implying that the IPr·SiH₂ unit is a stronger Lewis base than this classic Si(II) heterocyclic donor. 5c,12DFT studies on ImMe₂·SiH₂·W(CO)₅ identified a similar dative C_{IPr}^{δ} --Si^{δ +} bond [WBI = 0.725] as in ImMe₂·SiH₂·BH₃; moreover the SiH₂ groups in both adducts have considerable hydridic character (H^{δ} -). Lastly, the Si-W bonding electron density in ImMe₂·SiH₂·W(CO)₅ was moderately polarized towards Si (61%; WBI = 0.791).¹¹

In an attempt to better gauge the electron donating ability of the IPr·SiH₂ unit, and gain access to novel late metal silylene chemistry,⁷ we attempted to prepare the Rh carbonyl complex [IPr·SiH₂·Rh(CO)₂Cl]. Complexes of the general form [L·Rh(CO)₂Cl] (L = 2e⁻ donor) are used to benchmark relative ligand donor strengths by monitoring changes in the ν (CO) stretching frequencies.¹³ We initially investigated the chemistry between IPr·SiH₂·BH₃ and [Rh(CO)₂Cl]₂, and in each case observed the rapid formation of Rh metal and the generation of a large number of inseparable carbene-containing products. A stable Rh–silylene complex was obtained when IPr-SiCl₂ was reacted with [Rh(CO)₂Cl]₂. In place of forming the target monometallic complex, [IPr·SiCl₂·Rh(CO)₂Cl], its coordination isomer *trans*-[(IPr·SiCl₂)₂Rh(CO)₂]*cis*-[Rh(CO)₂Cl₂] (4) was obtained as an orange crystalline solid (eqn (1)); a higher

isolated yield of 4 (87%) was obtained with an excess of

Fig. 3 Thermal ellipsoid plot (30% probability) of the *trans*- $[(IPr\cdotSiCl_2)_2Rh(CO)_2]^+$ cation in **4**. IPr-bound hydrogen atoms and CH₂Cl₂ solvent are omitted for clarity. Selected bond lengths [Å] and angles [°]: Rh(1)–Si 2.3605(8), Rh(1)–C(1) 1.901(4), C(2)–Si 1.939(3); C(2)–Si–Rh(1) 123.41(10), Cl(1)–Si–Cl(2) 102.56(5), Si–Rh(1)–C(1) 90.94(11), Si–Rh(1)–Si(A) 180.0.

The structure of **4** was verified by single-crystal X-ray crystallography (Fig. 3),¹¹ while ${}^{13}C{}^{1}H$ NMR spectroscopic studies revealed the retention of two distinct carbonyl environments in solution.¹⁴ The ligation of two IPr·SiCl₂ units to a sole Rh center in **4** is a likely consequence of the reduced proximal bulk at the donor site of this 2e⁻ ligand relative to NHCs (which readily give the monosubstituted complexes, [(NHC)Rh(CO)₂Cl]).¹³ Unfortunately our attempts to generate a Rh-bound silylene complex featuring reactive Si–H groups *via* the reaction of **4** with various hydride sources exclusively led to the formation of metallic Rh and complicated product mixtures. The synthesis of a complex with stable Si(11)–Rh interactions represents a new addition to the growing family of metallosilylenes,^{7,15} and future work will focus on investigating other methods to deliver SiH₂ functionality onto metal centers.

In summary, we have uncovered an efficient synthetic pathway for the preparation of stable donor–acceptor adducts of SiH₂. Future work will involve an in-depth study of the reactivity of the IPr·SiH₂ array including the exploration of potential Si–H bond activation processes. These studies could add valuable insight into the nature of metal-assisted catalysis involving silanes.^{4c,7}

This work has been supported by NSERC of Canada (E.R. and A.C.M.), the Canada Foundation for Innovation, Alberta Innovates (E.R. and S.M.I.A.) and Suncor Energy Inc. (Petro-Canada Young Innovator Award to E.R.).

Notes and references

- 1 (a) N. Kuhn and A. Al-Sheikh, Coord. Chem. Rev., 2005, 249, 829; (b) Y. Wang and G. H. Robinson, Inorg. Chem., 2011, 50, 12326; (c) R. Kinjo, B. Donnadieu, M. A. Celik, G. Frenking and G. Bertrand, Science, 2011, 333, 610; (d) Y. Wang, Y. Xie, P. Wei, R. B. King, H. F. Schaefer III, P. v. R. Schleyer and G. H. Robinson, Science, 2008, 321, 1069; (e) C. Jones, Chem. Commun., 2001, 2293; (f) S. J. Bonyhady, D. Collis, G. Frenking, N. Holzmann, C. Jones and A. Stasch, Nat. Chem., 2010, 2, 865; (g) R. S. Ghadwal, H. W. Roesky, S. Merkel, J. Henn and D. Stalke, Angew. Chem., Int. Ed., 2009, 48, 5683; (h) A. C. Filippou, O. Chernov and G. Schnakenburg, Angew. Chem., Int. Ed., 2009, 48, 5687; (i) S. Yao, Y. Xiong and M. Driess, Chem.-Eur. J., 2010, 16, 1281; (j) A. J. Arduengo III, J. C. Calabrese, A. H. Cowley, H. V. Rasika Dias, J. R. Goerlich, W. J. Marshall and B. Riegel, Inorg. Chem., 1997, 36, 2151; (k) J. L. Dutton and P. J. Ragogna, Inorg. Chem., 2009, 48, 1722.
- (a) U. Vogel, A. Y. Timoshkin and M. Scheer, Angew. Chem., Int. Ed., 2001, 40, 4409; (b) P. A. Rupar, M. C. Jennings, P. J. Ragogna and K. M. Baines, Organometallics, 2007, 26, 4109; (c) Y. Xiong, S. Yao and M. Driess, Angew. Chem., Int. Ed., 2010, 49, 6642; (d) R. S. Ghadwal, R. Azhakar, H. W. Roesky, K. Pröpper, B. Dittrich, S. Klein and G. Frenking, J. Am. Chem. Soc., 2011, 133, 17552.
- 3 (a) K. C. Thimer, S. M. I. Al-Rafia, M. J. Ferguson, R. McDonald and E. Rivard, *Chem. Commun.*, 2009, 7119; (b) S. M. I. Al-Rafia, A. C. Malcolm, S. K. Liew, M. J. Ferguson and E. Rivard, *J. Am. Chem. Soc.*, 2011, 133, 777; (c) S. M. I. Al-Rafia, A. C. Malcolm, S. K. Liew, M. J. Ferguson, R. McDonald and E. Rivard, *Chem. Commun.*, 2011, 47, 6987; (d) S. M. I. Al-Rafia, A. C. Malcolm, R. McDonald, M. J. Ferguson and E. Rivard, *Angew. Chem., Int. Ed.*, 2011, 50, 8354; (e) S. Inoue and M. Driess, *Angew. Chem., Int. Ed.*, 2011, 50, 5614.
- 4 For recent examples of Si(II) monohydrides, see: (a) S.-H. Zhang, H.-X. Yeong, H.-W. Xi, K. H. Lim and C.-W. So, Chem.-Eur. J., 2010, 16, 10250; (b) A. Jana, D. Leusser, I. Objartel, H. W. Roesky and D. Stalke, Dalton Trans., 2011, 40, 5458; (c) R. Rodriguez, D. Gau, Y. Contie, T. Kato, N. Saffon-Merceron and A. Baceiredo, Angew. Chem., Int. Ed., 2011, 50, 11492; (d) M. Stoelzel, C. Präsang, S. Inoue, S. Enthaler and M. Driess, Angew. Chem., Int. Ed., 2011, DOI: 10.1002/anie.201105722.
- 5 (a) W. Petz, Chem. Rev., 1986, 86, 1019; (b) Y. Mizuhata, T. Sasamori and N. Tokitoh, Chem. Rev., 2009, 109, 3479; (c) M. Haaf, A. Schmiedl, T. A. Schmedake, D. R. Powell, A. J. Millevolte, M. Denk and R. West, J. Am. Chem. Soc., 1998, 120, 12714 and references therein.
- 6 J. M. Jasinski and S. M. Gates, Acc. Chem. Res., 1991, 24, 9.
- 7 (a) R. Waterman, P. G. Hayes and T. D. Tilley, Acc. Chem. Res., 2007, 40, 712; (b) C. Zybill and G. Müller, Angew. Chem., Int. Ed. Engl., 1987, 26, 669; (c) D. G. Gusev, F.-G. Fontaine, A. J. Lough and D. Zargarian, Angew. Chem., Int. Ed., 2003, 42, 216; (d) M. Ochiai, H. Hashimoto and H. Tobita, Angew. Chem., Int. Ed., 2007, 46, 8192.
- 8 M. Y. Abrahim, Y. Wang, Y. Xie, P. Wei, H. F. Schaefer III, P. v. R. Schleyer and G. H. Robinson, J. Am. Chem. Soc., 2011, 133, 8874.
- 9 R. Azhakar, G. Tavcar, H. W. Roesky, J. Hey and D. Stalke, *Eur. J. Inorg. Chem.*, 2011, 475.
- 10 R. J. Baker, A. J. Davies, C. Jones and M. Kloth, J. Organomet. Chem., 2002, 656, 203. The direct reaction between IPr-SiCl₂ and Li[AlH₄] also gave IPr-AlH₃ as the major product.
- 11 See the ESI[‡] for full details.
- 12 N. Metzler and M. Denk, Chem. Commun., 1996, 2657.
- 13 D. M. Khramov, V. M. Lynch and C. W. Bielawski, Organometallics, 2007, 26, 6042.
- 14 (a) M. A. Garralda and L. Ibarlucea, J. Organomet. Chem., 1986, 311, 225; (b) J. J. Kim and H. Alper, Chem. Commun., 2005, 3059.
- 15 (a) R. S. Ghadwal, R. Azhakar, K. Pröpper, J. J. Holstein, B. Dittrich and H. W. Roesky, *Inorg. Chem.*, 2011, **50**, 358; (b) J. Li, S. Merkel, J. Henn, K. Meindl, A. Döring, H. W. Roesky, R. S. Ghadwal and D. Stalke, *Inorg. Chem.*, 2010, **49**, 775.