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Abstract: A three-component coupling of alk-2-ynals,
1,3-dicarbonyls and silanes is reported. ZnCl2 serves as an
inexpensive and low-toxic catalyst for the overall trans-
formation, which involves Knoevenagel condensation,
cyclization, and carbene Si¢H bond insertion. The process
takes place with high atom economy in the absence of
organic solvents and shows a broad scope. This reaction is
also applicable to the functionalization of oligomeric
siloxanes.

Silanes are an important class of compounds in chemistry.[1]

With respect to organic chemistry, synthetic applications of or-
ganosilanes have been established as routine protocols. Thus,
named reactions based on the use of compounds bearing silyl
groups such as Hiyama coupling, Sakurai allylation, Peterson
olefination, or Brook rearrangements, among others, are
commonly used synthetic tools.[1c, 2] Moreover, the natural
abundancy of silicon, the stability of organosilanes and silox-
anes, their low toxicities, and macroscopic properties have
made silicon-based materials and polymers essential for our
society.[3] Considering the significance of silanes, the develop-
ment of efficient methodologies for their synthesis is a topic of
continuous interest. Several methods have been employed to
prepare organosilanes, including reactions of organometallics
with halosilanes[4] or metal-catalyzed cross-couplings[5] and hy-
drosilylations using hydrosilanes.[6] Moreover, transition-metal-
catalyzed insertion of carbenes or carbenoids, generated from
stabilized diazocompounds, into Si¢H bonds is one of the
most efficient tools for the functionalization of silanes.[7, 8] As
an alternative to the use of diazocompounds, diiodoalkanes
(A) and Et2Zn can be employed to generate Simmons-Smith-
type carbenoids capable of inserting into the Si¢H bond of
simple silanes (B) (Scheme 1, top).[9] Unfortunately, stoichiomet-
ric amounts of moisture/air sensitive Et2Zn are required to ac-
complish this reaction. We have recently disclosed a methodol-
ogy to generate zinc carbenoids in a catalytic fashion using
enynones (D) as a source of furyl zinc carbene intermediates
(F), which could be efficiently trapped in situ with silanes
through a Si¢H bond insertion (Scheme 1, middle).[10] This
transformation could be accomplished with catalytic amounts
of inexpensive and low toxic ZnCl2.

Multicomponent domino reactions have been shown to be
archetypal examples of efficient and sustainable processes.[11]

Because enynones (D) are prepared by Knoevenagel condensa-
tion (between compounds G and H), and Lewis acids such as
ZnCl2 can catalyze this type of condensation,[12] we wondered

if an operationally simpler and environmentally more benign
three-component protocol could be developed (Scheme 1,
bottom). According to this hypothesis, ZnCl2 might operate as
a single catalyst to promote a three step sequence: 1) Knoeve-
nagel condensation, 2) 5-exo-dig cyclization, and 3) Si¢H bond
insertion. The overall process could be considered as zinc self-
relay catalysis.[13] Herein, we disclose the findings that have
allowed us to accomplish a multicomponent reaction with an
overall similar efficiency with respect to the standard stepwise
approach showing an expanded scope, which includes the
functionalization of diversely substituted silanes and oligo-
siloxanes.

As benchmark substrates, commercially available reagents
2,4-pentanedione (1 a), oct-2-ynal (2 a), and triethylsilane (3 a)
were selected to explore the feasibility of a zinc-catalyzed mul-
ticomponent coupling to yield furan derivative 4 a. Tempera-
ture, relative ratio of reagents, and catalyst loading were
screened.[14] Optimal reaction conditions involved the use of
a slight excess of the silane 3 a (6 equiv), 5.0 mol % of ZnCl2,
and mild heating at 60 8C to afford 4 a in 73 % yield
(Scheme 2).[15] It is noteworthy that the use of an organic
solvent was not required and H2O was the only generated
by-product, which did not compromise the efficiency of the
reaction. This multicomponent protocol yielded 4 a with com-

Scheme 1. Zinc-promoted functionalization of Si¢H bonds: stoichiometric
vs. catalytic multicomponent approaches.

Scheme 2. Zinc-catalyzed three component coupling. Optimized conditions:
1 a (1.1 equiv), 2 a (0.2 mmol), 3 a (6.0 equiv), ZnCl2 (5.0 mol %), 60 8C, 16 h
(yields refer to isolated products).
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parable efficiency to that observed when using previously syn-
thesized enynone (73 % and 77 %, respectively).[10] Moreover,
the process could be scaled-up to 50-fold (10 mmol scale)
providing 4 a in an even higher yield (88 %, 2.83 g).

The optimized reaction conditions were then applied to
study the scope of this multicomponent coupling (Scheme 3).
1,3-Dione 1 a and triethylsilane (3 a) were combined with a

variety of alkyl-substituted alkynals, including primary, secon-
dary,[16] tertiary, or remotely functionalized alkyl groups to yield
compounds 4 a–f in moderate to good yields. The use of 1-
cyclohexenyl-substituted alkynal led to allylsilane 4 g in 61 %
yield. Aryl-substituted alkynals with different electronic proper-
ties also proved to be suitable substrates, providing com-
pounds 4 h–j. Modifications of the 1,3-dione were feasible, as
shown in compounds 4 k–m and 4 o–p. Notably, when using

ketoesters as the 1,3-dione component, the reaction took
place chemoselectively through the ketone moiety to afford
4 l–m and 4 o in spite of the poor selectivity of the Knoevena-
gel condensation.[17] Next, we evaluated the scope with respect
to the silane coupling partner. Trisubstituted silanes bearing
alkyl or aryl groups could be employed, yielding compounds
4 n–q with similar efficiencies. Though triethoxysilane proved
unreactive under various reaction conditions tested, inexpen-
sive siloxysilanes, readily available in bulk quantities, could also
be functionalized with the present procedure to lead to com-
pounds 4 r–s in synthetically useful yields. Other valuable moi-
eties were tolerated in the silane. For instance, alkynylsilane
participated in the reaction, leading to densely functionalized
compounds 4 t–u. 2-Silyl-substituted indole was also a compe-
tent coupling partner, affording silane 4 v, albeit in lower yield
(45 %, the two-component procedure led to 4 v in 80 % yield).
Finally, di- and mono-substituted silanes were studied as well.
The corresponding silanes 4 w–z were obtained, albeit in lower
yields when compared with the two-component procedure.[18]

The present multicomponent procedure leads to furan deriv-
atives 4 in almost comparable yields to those obtained from
two-component approach (except for 4 v, 4 x, and 4 y). Aside
from its remarkable efficiency, advantages with respect to the
operational simplicity, minimization of waste, and the scale-up
feasibility are noteworthy features of this three-component
coupling to consider it as the procedure of choice.

Geminal bis(silanes) represent a special type of organosilane
with potential synthetic applications as coupling reagents due
to their bifunctional character given by this particular struc-
ture.[19, 20] In view of that, we next explored the feasibility to
apply this multicomponent coupling to access orthogonally
substituted geminal bis(silanes) by means of commercially
available 3-(trimethylsilyl)propiolaldehyde (2 k). Thus, when al-
kynal 2 k was subjected to optimized reaction conditions using
1,3-dione 1 a and triethylsilane (3 a), geminal bis(silane) 5 a was
obtained in 61 % yield (Scheme 4). Subsequent modifications
of the 1,3-dione led to compounds 5 b–c in similar yields. With
respect to the silane coupling partner, a dialkylarylsilane, siloxy-

Scheme 3. Scope of reaction. Reaction conditions: 1 (0.3 mmol), 2
(1.1 equiv), 3 (6.0 equiv), ZnCl2 (5.0 mol %), 60 8C, 12–16 h. Yields refer to
isolated products. The values in parenthesis indicate the yield for the two-
component reaction using the corresponding enynone and ZnCl2 (10 mol %)
at ambient temperature. [a] See ref. [16] . [b] CH2Cl2 (0.5 mL) was used as
solvent.

Scheme 4. Zinc-catalyzed synthesis of orthogonally substituted geminal
bis(silane) derivatives 5.
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silanes, or an alkynylsilane could be employed for the Si¢H
bond insertion to afford geminal bis(silanes) 5 d–g.

Polysiloxanes and silicones have been considered com-
pounds with marked economic significance for decades.[21] Be-
cause of their versatility and unique chemical, physical, and
electrical properties, polysiloxanes and silicones play a relevant
role among advanced materials with widespread applications
in products ranging from biomedicine to consumer electron-
ics.[3, 22] As a result of the unquestionable importance of these
compounds, methodologies that enable the modification of
polysiloxanes to modulate their properties are always in
demand. To demonstrate the utility of the methodology
developed in this work as a tool with potential applications in
materials science, we evaluated the functionalization of Si¢H
bonds in representative low-molecular weight oligosiloxanes
(Scheme 5). Initially, simple 1,1,3,3-tetramethyldisiloxane (3 i)

was selected as a model substrate. Preliminary experiments re-
vealed that the Si¢H bond insertion was feasible, although the
two-component reaction proved superior to the multicompo-
nent version (73 % vs. 35 %, respectively). Consequently, we
moved to other typical cyclic or linear polysiloxanes (3 j and
3 k, respectively), which could also be functionalized to obtain
the corresponding functionalized oligosiloxanes 7 b–e in good
yields, highlighting the potential of this approach.[23]

In summary, we report the functionalization of Si¢H bonds
through a zinc-catalyzed multicomponent coupling using 1,3-
diones, alk-2-ynals, and silanes, through the in situ generation
of a 2-furyl zinc carbenoid. Inexpensive, low-toxic ZnCl2 was
employed as a single catalyst, promoting a sequence of Knoe-
venagel condensation/enyne cyclization/Si¢H bond insertion in
a self-relay catalytic process. This transformation proceeds

without using organic solvents or harmful residue generation
since H2O is the only by-product. The broad scope regarding
all coupling partners is remarkable. Thus, the procedure was
used for the synthesis of interesting unsymmetrically substitut-
ed geminal bis(silanes). Moreover, the functionalization of Si¢H
bonds in representative oligosiloxanes exemplifies the feasibili-
ty to apply this reaction in a relevant field such as polymeric
advanced material modifications.
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