Synthesis of Homophthalates by [3+3] Cyclocondensation Reactions of 1,3-Bis(silyloxy)-1,3-butadienes with Silylated Methyl 3,5-Dioxohexanoate

Jennifer Hefner^a, Alexander Villinger^a and Peter Langer^{a,b}

^a Institut für Chemie, Universität Rostock, Albert-Einstein-Str. 3a, 18059 Rostock, Germany

^b Leibniz-Institut f
ür Katalyse an der Universit
ät Rostock e. V., Albert-Einstein-Str. 29a, 18059 Rostock, Germany

Reprint requests to Prof. Dr. Peter Langer. E-mail: peter.langer@uni-rostock.de

Z. Naturforsch. **2013**, *68b*, 831–835 / DOI: 10.5560/ZNB.2013-3020 Received January 21, 2013

Homophthalates were prepared by formal [3+3] cyclocondensation of 1,3-bis(silyl enol ethers) with silylated methyl 3,5-dioxohexanoate.

Key words: Homophthalates, Cyclizations, Silyl Enol Ethers, Regioselectivity

Introduction

Homophthalates (Fig. 1) are of considerable relevance to the synthesis of natural products [1]. Lunularic acid (6-(4-hydroxyphenethyl)salicylic acid; Fig. 1) plays an important role in the regulation of the growth of plants [2]. Homophthalates also represent versatile synthetic building blocks. For example, Arai et al. reported the condensation of 3-methoxyhomophthalic acid with anisol to give an isocumarine which was transformed by catalytic hydrogenation and reaction with boron tribromide into lunularic acid [3]. Another example is the synthesis of sclerin from methyl 3-oxopentanoate via a dimethyl homophthalate [4]. Sclerin is a natural product isolated from the fungus Sclerotinia libertiana and is known to act as a phytohormon [5]. Homophthalates were earlier prepared by cyclization of 1,3-bis(silyl enol ethers) [6-9]with trimethylorthoacetate, acetyl chloride or acetic anhydride [4-10]. The reaction follows a 2 : 1 stoichiometry and proceeds by condensation to give an open-chain adduct and by subsequent formal [3+3] cyclocondensation. Homophthalates are also available by [4+2] cycloaddition of 1,3-bis(silyl enol ethers) with dimethyl allene-1,3-dicarboxylate [11]. Herein, we report a stepwise synthesis of homophthalates by formal [3+3] cyclocondensation of 1,3-bis(silyl enol ethers) with silvlated 3,5-dioxoesters.

Homophthalic acidLunularic acidFig. 1. Homophthalic acid and lunularic acid.

Results and Discussion

Methyl 3,5-dioxohexanoate (2) was prepared by reaction of dehydracetic acid (1) with magnesium methanolate in 89% yield (Scheme 1) [12]. Silylation of 2 resulted in the formation of silvl enol ether 3 (77%) yield) which exists as a mixture of three isomers which were not structurally assigned. The 6 theoretically possible regioisomers and E/Z-isomers are depicted in Scheme 2. 1,3-Diketones are more readily enolized than β -ketoesters. Therefore, we believe that isomers **E** and **F** are not present, although we do not have an experimental proof. Detailed NMR experiments were not possible, due to the unstable nature of the product. However, the exact structure of the isomers is presumably not relevant for the subsequent cyclization reaction, because it is known that the silvl groups and double bond configurations can be interconverted un-

© 2013 Verlag der Zeitschrift für Naturforschung, Tübingen · http://znaturforsch.com

4,

a b c

Scheme 1. Synthesis of 3.

Scheme 2. Possible isomers of 3.

der the conditions of TiCl₄-mediated [3+3] cyclization reactions with 1,3-bis(silyl enol ethers) [10].

The TiCl₄-mediated formal [3+3] cyclization of **3** with 1,3-bis(silyl enol ether) **4a**, prepared from methyl acetoacetate, resulted in the formation of homophthalate **5a** in 45% yield (Scheme 3, Table 1). The best yield was obtained when 1.0 equiv. of **3**, 1.5 equiv. of **4a** and 1.1 equiv. of TiCl₄ were employed, and when the reaction was carried out in a highly concentrated solution ($c(3) = 0.4 \text{ mol L}^{-1}$). The reaction proceeded with excellent regioselectivity. Only the regioisomer containing a homophthalate structure with both ester groups located *ortho* to each other was obtained. The

5	R	5 (%) ^a	<i>iso-</i> 5 (%) ^a
	Н	45	0
	Me	20	10
	Et	41	0

^a Yields of isolated products.

other isomer, containing the ester groups located *para* to each other was not observed. The structure of **5a** (isomer **A**) was established by a ¹H,¹H-NOESY experiment (Scheme 4). A ¹H,¹H-NOESY correlation was observed between the methyl group ($\delta = 2.30$ ppm) and the aromatic protons ($\delta = 6.54$ ppm and $\delta = 6.77$ ppm). The methylene group ($\delta = 3.84$ ppm) only showed a correlation with the aromatic proton resonating at $\delta = 6.54$ ppm. The NOE correlations expected for isomer **B** were not observed.

The structure was independently confirmed by an X-ray crystal structure analysis (Fig. 2). Both intraand intermolecular hydrogen bonds are observed. The intramolecular distances are $d(O(3)-H\cdots O(1) =$ 1.79(2) Å and $d(O(3)\cdots O(1)) = 2.565(1)$ Å. The intermolecular distances are $d(O(3)-H\cdots O(3)^* = 2.853$ Å and $d(O(3)\cdots O(3)^*) = 3.022$ Å (* = neighboring molecule). Between the benzene rings π -stacking interactions are observed with $d_{\min}(\text{center}) = 3.690$ Å.

The cyclization of 1,3-bis(silyl enol ether) **4b** with **3** afforded a separable mixture of the regioisomers **5b** (20%) and *iso*-**5b** (10%). The structures were established by 1 H, 1 H-NOESY und 1 H, 13 C-HMBC experi-

Scheme 3. Synthesis of 5a - c and iso-5a - c.

Isomer A Isomer B Scheme 4. Observed NOESY correlations of 5a (isomer A) and expected correlations of *iso*-5a (isomer B).

Fig. 2. ORTEP plot of **5a** (displacement ellipsoids at the 50% probability level; H atoms as spheres with arbitrary radii).

Scheme 5. Diagnostic NOESY correlations (double headed arrow) and HMBC correlations (single headed arrow) of **5b** (left) and *iso*-**5b** (right).

ments (Scheme 5). A diagnostic ¹H,¹H-NOESY correlation is observed for **5b** between the methyl group located at carbon C-3 and the methylene group. For **5b**, a ¹H,¹³C-HMBC correlation was observed between carbon atom C-1 (¹³C: $\delta = 109.0$ ppm) and the methylene group (¹H: $\delta = 3.81$ ppm). For *iso*-**5b**, a ¹H,¹³C-HMBC correlation was observed between carbon atom C-1 (¹³C: $\delta = 110.6$ ppm) and the methyl group located at carbon C-6 (¹H: $\delta = 2.48$ ppm).

The cyclization of diene **4c** with **3** afforded homophthalate **5c** in 41% yield. The structure of the product was established based on the comparison of the ¹H NMR chemical shifts of the methylene protons of **5a**, **5b**, **5c** and *iso*-**5b**. This comparison suggests that the methylene protons of the homophthalates, containcated *para* to the methoxycarbonyl group. The regioselective formation of homophthalates 5ac can be explained by the assumption that the more nucleophilic terminal carbon atom of the diene undertakes an attack onto the sterically less hindered lateral keto group of **3** (and not onto the more hindered central keto group). In addition, a chelation control (interaction of the Lewis acid TiCl₄ with the ester groups of both substrates) may also play a role.

to the regioisomer in which the methylene group is lo-

Experimental Section

Synthesis of 3

Compound 2 (1.0 equiv.) was dissolved in pentane (2 mL per mmol), and triethylamine (1.3 equiv.) was added under argon atmosphere. After stirring for 30 min, trimethylsilyl chloride (1.5 equiv.) was dropwise added. The mixture was stirred for 3 days at room temperature. The mixture was filtered under argon atmosphere, and the filtrate was concentrated in vacuo. Starting with 2 (2.372 g, 15.0 mmol), triethylamine (1.973 g, 19.5 mmol) and Me₃SiCl (2.444 g, 22.5 mmol) in pentane (30 mL), 3 was isolated as an orange oil (2.67 g, 77%). The compound exists as a mixture of three isomers (see Scheme 2) which were not structurally assigned. The exact configuration is irrelevant for the cyclization reaction. Therefore, the ¹H NMR signals are given with the overall integration. The compound is unstable and has to be used directly after its preparation. – ¹H NMR (250 MHz, CDCl₃): $\delta = 0.28, 0.28, 0.29 (3 \times s, 9H, Si(CH_3)_3), 2.14, 2.28, 2.20$ $(3 \times s, 3H, CH_3)$, 3.34, 3.39 $(3 \times s, 2H, CH_2)$, partial signal overlap), 3.65, 3.72, 3.74 (3 \times s, 3H, OCH₃), 5.25 (3 \times s, 1H, CH, signal overlap).

General procedure for the synthesis of homophthalates 5a-c

To a CH₂Cl₂ solution of **3** was added **4** and, subsequently, TiCl₄ at -78 °C. The temperature of the solution was allowed to warm to 20 °C during 14 h with stirring. To the solution was added hydrochloric acid (10%, 20 mL), and the organic and the aqueous layer were separated. The latter was extracted with CH₂Cl₂ (3 × 20 mL). The combined organic layers were dried (Na₂SO₄), filtered, and the filtrate was concentrated *in vacuo*. The residue was purifed by chromatography (silica gel, *n*-heptane, EtOAc).

Methyl 6-(2-methoxy-2-oxoethyl)-4-methyl-salicylate (5a)

Starting with **3** (0.230 g, 1.00 mmol), **4a** (0.391 g, 1.50 mmol) and TiCl₄ (0.12 mL, 1.10 mmol) in CH₂Cl₂ (2.5 mL), **5a** was isolated as a colorless solid (0.164 g, 45%);

m. p. 79–81 °C. – $R_{\rm f} = 0.39$ (heptane-EtOAc 1 : 1). – ¹H NMR (300 MHz, CDCl₃): $\delta = 2.30$ (s, 3H, CH₃), 3.69 (s, 3H, CH₂COOCH₃), 3.84 (s, 2H, CH₂), 3.87 (s, 3H, OCH₃) 6.54 (s, 1H, H-5), 6.77 (s, 1H, H-3), 11.22 (s, 1H, OH). – ¹³C NMR (75.5 MHz, CDCl₃): $\delta = 21.5$ (CH₃), 42.5 (CH₂), 51.8 (OCH₃), 109.4 (C-1), 117.7, 125.3 (CH_{Ar}), 136.0 (C-6), 145.7 (C-4), 163.1 (C_{Ar}OH), 171.0 (CH₂COOCH₃), 172.0 (COOCH₃). – IR (ATR, cm⁻¹): $\tilde{v} = 3100$ (w), 2951 (w), 1737 (s), 1657 (s), 1437 (s), 1164 (m), 733 (m). – MS (GC, 70 eV): m/z (%) = 238 (42) [M]⁺, 206 (52), 178 (86), 174 (43), 163 (100), 119 (42). – HRMS (EI, 70 eV): m/z (%) = 238.08419 (calcd. 238.08358 for C₁₂H₁₄O₅, [M]⁺). – Anal. for C₁₂H₁₄O₅(238.24): calcd. C 60.50, H 5.92; found C 61.13, H 5.96.

Methyl 6-(2-methoxy-2-oxoethyl)-3,4-dimethyl-salicylate (5b)

Starting with **3** (0.230 g, 1.00 mmol), **4b** (0.433 g, 1.50 mmol) and TiCl₄ (0.12 mL, 1.10 mmol) in CH_2Cl_2 (2.5 mL), **5b** (0.051 g, 20%) and *iso*-**5b** (0.035 g, 10%) were isolated as colorless solids; m. p. $100-102 \degree C. - R_f =$ 0.37 (heptane-EtOAc 1 : 1). – ¹H NMR (500 MHz, CDCl₃): $\delta = 2.16$ (s, 3H, C3-CH₃), 2.27 (s, 3H, C4-CH₃), 3.68 (s, 3H, CH₂COOCH₃), 3.81 (s, 2H, CH₂), 3.87 (s, 3H, OCH₃), 6.54 (s, 1H, Ar), 11.60 (s, 1H, OH). – ¹³C NMR (75.5 MHz, CDCl₃): $\delta = 11.5$ (C3-CH₃), 20.4 (C4-CH₃), 42.5 (CH₂), 51.8, 51.8 (OCH₃), 109.0 (C-1), 124.6 (C-3), 125.4 (CH_{Ar}), 132.6 (C-6), 143.8 (C-4), 161.2 (C_{Ar}OH), 171.6 (CH₂COOCH₃), 172.3 (COOCH₃). – IR (ATR, cm⁻¹): $\tilde{v} = 3024$ (w), 2943 (w), 1731 (s), 1654 (m), 1429 (m), 1135 (m), 771 (m). – MS (GC, 70 eV): m/z (%) = 252 (46) [M]⁺, 220 (100), 192 (55), 160 (49), 133 (26). - HRMS (EI, 70 eV): m/z (%) = 252.09970 (calcd. 252.09923 for $C_{13}H_{16}O_5$, [M]⁺). – Anal. for $C_{13}H_{16}O_5(252.26)$: calcd. C 61.90, H 6.39; found C 61.40, H 6.38.

Methyl 4-(2-methoxy-2-oxoethyl)-3,6-dimethyl-salicylate (*iso-5b*)

 $R_{\rm f} = 0.43$ (heptane-EtOAc 1 : 1). – ¹H NMR (500 MHz, CDCl₃): $\delta = 2.17$ (s, 3H, C3-CH₃), 2.48 (s, 3H, C6-CH₃), 3.61 (s, 2H, CH₂), 3.69 (s, 3H, CH₂COOCH₃), 3.94 (s, 3H,

OCH₃), 6.58 (s, 1H, Ar), 11.70 (s, 1H, OH). $-{}^{13}$ C NMR (125.8 MHz, CDCl₃): $\delta = 11.5$, 23.8 (CH₃), 39.3 (CH₂), 52.0, 52.1 (OCH₃), 110.6 (C-1), 123.2 (C-3), 124.4 (CH_Ar), 137.9, 138.8 (C_Ar), 161.2 (C_ArOH), 171.2 (CH₂COOCH₃), 172.5 (COOCH₃).

Methyl 3-ethyl-6-(2-methoxy-2-oxoethyl)-4-methylsalicylate (5c)

Starting with 3 (0.230 g, 1.00 mmol), 4c (0.433 g, 1.50 mmol) and TiCl₄ (0.12 mL, 1.10 mmol) in CH_2Cl_2 (2.5 mL), **5c** was isolated as a colorless solid (0.108 g, 41%); m. p. $101 - 103 \degree C. - R_f = 0.38$ (heptane-EtOAc 1 : 1). $- {}^{1}H$ NMR (250 MHz, CDCl₃): $\delta = 1.11$ (t, ${}^{3}J = 7.5$ Hz, 3H, CH₂CH₃), 2.30 (s, 3H, CH₃), 2.68 (q, ${}^{3}J = 7.1$ Hz, 2H, CH₂CH₃), 3.68 (s, 3H, CH₂COOCH₃), 3.80 (s, 2H, CH₂), 3.86 (s, 3H, OCH₃), 6.52 (s, 1H, Ar), 11.56 (s, 1H, OH). -¹³C NMR (75.5 MHz, CDCl₃): $\delta = 12.9$, 19.4 (CH₃), 19.5 (CH₂CH₃), 42.5 (CH₂), 51.8, 51.8 (OCH₃), 109.2 (C_{Ar}), 125.8 (CH_{Ar}), 130.5, 132.8, 143.1 (C_{Ar}), 161.1 (C_{Ar}OH), 171.6, 172.3 (COO). – IR (ATR, cm⁻¹): $\tilde{v} = 2959$ (m), 1739 (s), 1648 (m), 1436 (s), 1168 (m), 759 (m). - MS (GC, 70 eV): m/z (%) = 266 (44) [M]⁺, 234 (60), 206 (28), 174 (100), 146 (27). – HRMS (EI, 70 eV): m/z (%) = 266.11480 (calcd. 266.11488 for $C_{14}H_{18}O_5$, $[M]^+$).

Crystal structure determination of 5a

Suitable single crystals of **5a** were obtained from dichloromethane. Intensity data were collected on a Bruker X8Apex Diffractometer with CCD camera (graphite-monochromatized Mo K_{α} radiation, $\lambda = 0.71073$ Å). *Crystal data*: Monoclinic space group $P2_1/c$, a = 7.5776(2), b = 20.1852(5), c = 8.1722(2) Å, $\beta = 112.8560(10)^{\circ}$, Z = 4; wR2 = 0.1069 for 161 refined parameters and 3326 unique data; largest diff. peak/hole: 0.38/-0.21 e Å⁻³. *Programs used*: Data analysis and space group determination: XPREP [13]; structure solution and refinement: SHELXS/L-97 [14, 15].

CCDC 929422 contains the supplementary crystallographic data for this paper. These data can be obtained free of charge from The Cambridge Crystallographic Data Centre *via* www.ccdc.cam.ac.uk/data_request/cif.

- [1] T. Ziegler, M. Layh, F. Effenberger, *Chem. Ber.* 1987, 120, 1347.
- [2] W. Steglich, B. Fugmann, S. Lang-Fugmann, *RÖMPP Lexikon Naturstoffe* 10. Auflage, Georg Thieme Verlag, Stuttgart 1997.
- [3] Y. Arai, T. Kamikawa, T. Kubota, *Tetrahedron Lett.* 1972, 16, 1615.
- [4] T.-H. Chang, P. Brownbridge, J. Chem. Soc., Chem. Commun. 1981, 20.
- [5] T. Tokoroyama, T. Kamikawa, T. Kubota, *Tetrahedron* 1968, 24, 2345.
- [6] P. Langer, Synthesis 2002, 441.
- [7] H. Feist, P. Langer, Synthesis 2007, 327.
- [8] K. Krägeloh, G. Simchen, Synthesis 1981, 30.

- [9] G. A. Molander, K. O. Cameron, J. Am. Chem. Soc. 1993, 115, 830.
- [10] T.-H. Chan, P. Brownbridge, J. Am. Chem. Soc. 1980, 102, 3534.
- [11] I. Hussain, M. A. Yawer, B. Appel, M. Sher, A. Mahal, A. Villinger, C. Fischer, P. Langer, *Tetrahedron* 2008, 64, 8003.
- [12] G. Solladie, L. Gressot-Kempf, *Tetrahedron: Asymmetry* **1996**, *7*, 2371.
- [13] XPREP (version 5.1), Data Preparation and Reciprocal Space Exploration, Bruker Analytical X-ray Instruments Inc., Madison, Wisconsin (USA) 1997.
- [14] G. M. Sheldrick, Acta Crystallogr. 1990, A46, 467.
- [15] G. M. Sheldrick, Acta Crystallogr. 2008, A64, 112.