Pages: 13

ChemPubSoc Europe

FULL PAPER

Luminescence

1,3,2-Benzodiazaboroles with 1,3-Pentafluorophenyl and Tetrafluoropyridyl Substituents as Building Blocks in Luminescent Compounds

Keywords: Boron / Diazaboroles / Perfluoroaryls / Photophysics / Luminescence

In contrast to π -donating 1,3-diethyl- and 1,3-diphenyl-1,3,2-benzodiazaboroles, derivatives with fluoroaryl substituents at the ring nitrogen atoms are potent π acceptors when connected to a carbazole donor through suitable π -conducting spacers. Thus, molecules of type **A** show low-energy emission bands from charge-transfer (CT) transitions with large Stokes shifts and pronounced solvatochromism.

Pages: 13

www.eurjic.org

DOI:10.1002/ejic.201300319

1,3,2-Benzodiazaboroles with 1,3-Pentafluorophenyl and Tetrafluoropyridyl Substituents as Building Blocks in Luminescent Compounds

Lothar Weber,*^[a] Johannes Halama,^[a] Lena Böhling,^[a] Andreas Brockhinke,*^[a] Anna Chrostowska,*^[b] Clovis Darrigan,^[b] Alain Dargelos,^[b] Hans-Georg Stammler,^[a] and Beate Neumann^[a]

Dedicated to Professor Heinrich Nöth on the occasion of his 85th birthday

Keywords: Boron / Diazaboroles / Perfluoroaryls / Photophysics / Luminescence

The reaction of N-4'-trimethylsilylphenyl-3,6-di-tert-butylcarbazole (3) or N-5'-trimethylsilylthien-2'-yl-3,6-di-tert-butylcarbazole (4) with boron tribromide and subsequently with triphenylphosphane afforded the dibromoborylphenylcarbazole-phosphane adduct 5 or its thiophene derivative 6 as colorless solids. These adducts were converted into the new benzodiazaborole derivatives 7 and 8 by treatment with $N_{i}N'$ -bis(pentafluorophenyl)-o-phenylenediamine (1) and 2,2,6,6-tetramethylpiperidine in hot toluene (52 or 45%

Introduction

Over the last two decades, the development of fluorescent organic compounds for potential application in photonic devices has been a focus of continuing interest. Among the huge number of luminescent species, molecular three-coordinate organoboron compounds and polymers are of emerging importance.^[1] Therein, the three-coordinate boron centre usually operates as a π acceptor owing to its vacant p orbital. The dimesitylboryl group (BMes₂, Mes = 2,4,6-Me₃C₆H₂) is by far the most prominent boron-containing substituent owing to the steric shielding of the unsaturated boron centre by the four *o*-methyl groups. The π accepting character of the BMes₂ unit is similar to those of NO₂ and CN based on UV^[2] and cyclic voltammetry data.^[3] Conjugated molecules with boryl substituents display very large Stokes shifts and high quantum yields in solution as well as in the solid state, which indicates the

Supporting information for this article is available on the WWW under http://dx.doi.org/10.1002/ejic.201300319.

yield). The analogous compounds 9 and 10 were obtained by condensing precursors **5** and **6** with bis(N,N'-2,3,5,6-tetrafluoropyrid-4-yl)-o-phenylenediamine (2) in the presence of the piperidine derivative in 35 and 16% yield. Compounds 7-10 were characterized by NMR spectroscopy (¹H, ¹¹B, ¹³C, 19 F) and mass spectrometry. The molecular structure of 8 was elucidated by X-ray diffraction analysis. The borylated systems show intense blue luminescence upon UV irradiation.

lack of close packing as a result of the sterically demanding mesityl groups.^[4] In the past decade, the chemistry of 1,3,2diazaboroles has developed rapidly.^[5,6] Some of these compounds are strongly luminescent as solids and in solution.^[7] For synthetic reasons, the 1,3-diethyl-1,3,2-benzodiazaborolyl group (1,3-Et₂-1,3,2-N₂BC₆H₄) has been frequently used, and compounds with this function are moderately airstable.^[5g,7e-7i] Calculations on 2-arylethynyl-1,3,2-diazaboroles disclosed the localization of the highest occupied molecular orbital (HOMO) on the diazaborole group and led to the suggestion that this group does not function as a π acceptor as originally anticipated but instead behaves as a π -donor substituent.^[7i] In line with these observations, it was obvious to study the syntheses and photophysical properties of systems containing two different types of threecoordinate boron centre, which may behave as a π donor on the one end and as a π acceptor on the other end of a rodlike molecule. Thereby, it was found that the π -electrondonating capacity of the 1,3-diethyl-1,3,2-benzodiazaborolyl group towards the BMes₂ unit is between that of methoxy and dimethylamino groups.^[8] In addition to this, chalcogenodiphenylphosphanyl and alkyldiphenylphosphonium functions were tested for their π -accepting properties towards B/N-heterocycles.^[9] Benzodiazaboroles are also potent π -electron donors when ligated to the carbon atoms of *o*-, *m*-, and *p*-*closo*-dicarbadodecaboranes.^[10]

[[]a] Fakultät für Chemie der Universität Bielefeld, 33615 Bielefeld, Germany E-mail: lothar.weber@uni-bielefeld.de

Homepage: www.Uni-bielefeld.de [b] IPREM, UMR 5254, Université de Pau et Pays de l'Adour, 64000 Pau, France

E-mail: anna.chrostowska@univ-pau.fr

Pages: 13

www.eurjic.org

At this point, we have been interested in the conditions under which a 1,3,2-benzodiazaborolyl group may undergo an "umpolung" inversion to a π -accepting functionality. Here, it was conceivable to fix a powerful π donor at the opposite end of the organic chain. For this purpose, we selected carbazolyl units, but soon learned that in such species the HOMO and lowest unoccupied molecular orbital (LUMO) are mainly located on the organic part of the molecule, and the benzodiazaborolyl part of the molecule becomes a mere spectator ligand.^[7b] As an alternative, the introduction of powerful electron-acceptor substituents at both nitrogen atoms of the B/N-heterocycle seems promising. The present work is focused on the role of 1,3-bis-(pentafluorophenyl)- and 1,3-bis(2,3,5,6-tetrafluoropyridin-4-yl)-functionalized 1,3,2-benzodiazaboroles as ligands in N-phenyl- and N-thienylcarbazoles.

Results and Discussion

Basically, the synthesis of aryl-functionalized 1,3,2benzodiazaboroles I can be accomplished by the two different routes (A and B, Scheme 1).

Scheme 1. General synthetic routes to 2-(hetero)aryl-1,3,2-benzodiazaboroles.

Path A is the base-assisted cyclocondensation between an *o*-phenylene diamine **II** and a (hetero)aryldibromoborane **III**, whereas path B involves the nucleophilic substitution of bromide in 2-bromobenzodiazaboroles **IV** by organolithium compounds.^[11]

For this work, route A proved to be more efficient and was, thus, preferred over the alternative route B. The required N,N'-bis(perfluoroaryl)-*o*-phenylenediamines were prepared by reacting *o*-phenylenediamine with 4 equiv. of lithiumbis(trimethylsilyl)amide in tetrahydrofuran (THF) at -78 °C followed by 2 equiv. of hexafluorobenzene^[12] or pentafluoropyridine (Scheme 2).

The purification of crude **2** was accomplished by sublimation at 10^{-6} bar and 140 °C, whereby the product was obtained as a pale yellow solid in 67% yield.

The syntheses of (heteroaryl)dibromoboranes **III** were realized by treatment of the appropriate trimethylsilylarenes with boron tribromide. The silylated precursors **3** and **4** resulted from the reaction of freshly prepared organolithiums with chlorotrimethylsilane (TMSCl, Scheme 3).

Scheme 2. Syntheses of *o*-phenylenediamines 1 and 2.

Scheme 3. Syntheses of 5 and 6.

Compounds 3 and 4 reacted smoothly with an equivalent amount of boron tribromide in dichloromethane within 16 h or 2 h, respectively. As the resulting organodibromoboranes underwent no clean cyclocondensations with the o-phenylenediamines 1 and 2, presumably because of their pronounced Lewis acidity, they were converted into the less reactive triphenylphosphane adducts 5 and 6. These ad-

Scheme 4. Syntheses of 7 and 8.

Scheme 5. Syntheses of 9 and 10.

ducts react with equimolar amounts of phenylenediamine **1** and two equiv. of 2,2,6,6-tetramethylpiperidine in hot toluene (100 °C) in 15 h to afford the new benzodiazaborole derivatives **7** and **8** as pale yellow solids in 52 and 45% yield, respectively. The crude reaction products were separated from triphenylphosphane by sublimation at 100– 120 °C (Scheme 4).

Similarly, adducts 5 and 6 were converted to benzodiazaboroles 9 (35%) and 10 (16% yield) by heating them with equimolar amounts of 2 in the presence of 2 equiv. of 2,2,6,6-tetramethylpiperidine (Scheme 5).

The continuous extraction of crude 9 with *n*-hexane over 16 h furnished an analytically pure colorless solid. Crude 10 was extracted with *n*-pentane, and the combined extracts were subsequently stirred with copper(I) iodide to remove excess triphenylphosphane. In this way, pure 10 was obtained as yellow crystals.

For the validation of the utility of 1,3,2-benzodiazaborolyl groups with various aryl- and heteroaryl substituents at the N atoms in luminescent carbazoles, the comparison of 7 and 8 with the non-fluorinated derivatives 11 and 12 was indispensable (Figure 1).

Figure 1. Compounds 11 and 12.

Compound 12 has been the subject of a recent paper.^[7b] The missing link, the 1,3,2-benzodiazaborole derivative 11, was synthesized from *N*-(4'-bromophenyl)-3,6-di-*tert*-butyl-carbazole by lithium/halogen exchange with *n*-butyllithium in diethyl ether at -78 °C and the subsequent quench of the resulting aryllithium species with 2-bromo-1,3-diphenyl-1,3,2-benzodiazaborole. The pure product was obtained as a colorless solid by continuous *n*-hexane extraction over 2 d (yield 63%, Scheme 6).

In contrast to 11, compounds 7–10 are reasonably stable towards moisture and oxygen. They are soluble in $CHCl_3$, CH_2Cl_2 , ethers, and aromatic hydrocarbons. In aliphatic hy-

Pages: 13

www.eurjic.org

Scheme 6. Synthesis of 11.

drocarbons, the new benzodiazaborole derivatives are poorly soluble. In the ¹¹B{¹H}NMR spectra broad singlets were observed at δ = 30.7 and 29.9 ppm for of 7 and 9, respectively, and δ = 27.7 and 28.9 ppm for 8 and 10, respectively. The incorporation of two *N*-C₆F₅ substituents as in 7 caused only a slight deshielding of the ¹¹B NMR signal in comparison to that of the non-fluorinated analogue 11 (δ = 29.3 ppm).

X-ray and Computational Structural Analysis of 8

Single crystals of **8** suitable for an X-ray structural study (Table 7) were grown from *n*-hexane solution at -20 °C. The compound crystallizes in the monoclinic space group $P2_1/c$. The molecule is constructed of three planar rings (Figure 2, Table 1), whereby the central thiophene ring is linked to the benzodiazaborole unit by a single bond B(1)–C(19) [1.530(5) Å], which is slightly shorted in comparison to the B–C bond in **13** [1.557(2) Å], but matches well with that in the 5'-dimesitylboryl-2-*N*-carbazolylthiophene [14, 1.536(3) Å, Figure 3].

Figure 2. Crystal structure of 8.

Figure 3. Compounds 13 and 14.

The thiophene ring is linked in the 2-position to the carbazole fragment by a single N(3)–C(22) bond [1.405(4) Å]. The respective bond lengths in **13** and **14** are 1.405(2) and 1.394(3) Å. The molecule deviates from planarity as evident by the interplanar angles enclosed by the central thiophene ring and the diazaborole plane (10.1°) or the carbazole ring (42°). Although the latter angle is similar to that in **13**

Table 1. Comparison of selected experimental and [CAM-B3LYP/6-311G(d,p)] calculated bond lengths [A] and angles [°] for	ngles [°] for 8
---	-----------------

1	1	L		0 1 3	0 1 3
Bond	Experimental	CAM-B3LYP	Angle	Experimental	CAM-B3LYP
B(1)–N(1)	1.440(4)	1.4397	N(1)-B(1)-N(2)	104.5(3)	105.41
B(1) - N(2)	1.441(4)	1.4367	B(1)-N(1)-C(1)	109.5(2)	108.79
N(1)-C(1)	1.421(4)	1.4072	B(1)-N(1)-C(7)	127.8(3)	128.11
N(2) - C(2)	1.411(4)	1.4070	B(1)-N(2)-C(2)	109.7(2)	108.90
N(1) - C(7)	1.415(4)	1.4053	B(1)-N(2)-C(13)	126.9(2)	128.12
N(2) - C(13)	1.417(4)	1.4045	N(1) - C(1) - C(2)	107.9(2)	108.45
C(1) - C(2)	1.397(4)	1.3978	N(2)-C(2)-C(1)	108.4(2)	108.44
B(1) - C(19)	1.530(5)	1.5394	N(1)-B(1)-C(19)	128.6(3)	127.66
S(1) - C(19)	1.729(3)	1.7325	N(2)-B(1)-C(19)	126.8(3)	126.89
S(1) - C(22)	1.721(3)	1.7373	B(1)-C(19)-S(1)	120.4(2)	122.32
C(19) - C(20)	1.370(4)	1.3701	B(1)-C(19)-C(20)	130.6(3)	127.48
C(20) - C(21)	1.407(4)	1.4169	C(19)-S(1)-C(22)	92.6(1)	92.14
C(21) - C(22)	1.361(4)	1.3619	S(1)-C(22)-C(21)	111.6(2)	111.17
N(3)-C(22)	1.405(4)	1.3929	C(20)-C(21)-C(22)	111.7(3)	112.44
N(3)-C(23)	1.416(4)	1.3980	S(1)-C(19)-C(20)	108.9(2)	109.95
N(3)-C(34)	1.412(4)	1.3972	C(19)–C(20)–C(21)	115.3(3)	114.23
C(23)–C(28)	1.397(4)	1.4024	S(1)-C(22)-N(3)	120.0(2)	120.70
C(28)–C(29)	1.457(4)	1.4491	C(21) - C(22) - N(3)	128.3(3)	128.12
C(29)–C(34)	1.405(4)	1.4026	C(23) - N(3) - C(34)	107.8(2)	108.25
			C(22)–N(3)–C(23)	125.1(2)	125.58

Pages: 13

 (41.4°) , the diazaborole ring is clearly more twisted into the thiophene plane in 8 than in 13 (34.7°), which points to more π interaction between the better π -accepting fluorinated borole in comparison to the N,N'-dialkyl derivative in 13. The bond lengths and angles within the benzodiazaborole part are as usual. The bond lengths within the thiophene building block [S(1)–C(19) 1.729(3) Å, S(1)–C(22) 1.721(3) A] C(19)-C(20)1.370(4) A, C(20)-C(21)1.407(4) Å, and C(21)–C(22) 1.361(4) Å] are close to those in 13 [1.735(1), 1.735(1), 1.373(2), 1.416(2), and 1.364(2) Å]. As also observed in 13, the exocyclic angles B(1)-C(19)-S(1) [120.4(2)°] and B(1)–C(19)–C(20) [130.6(3)°] differ significantly. Similar observations were made with angles S(1)-C(22)–N(3) [120.0(2)°] and C(21)–C(22)–N(3) [128.3(3)°].

In Table 1, the [CAM-B3LYP/6-311G(d,p)] calculated geometrical parameters for 8 are compared with the experimental results (see Supporting Information for the calculated geometrical parameters of 7-11).

In comparison to the experimentally determined geometrical parameters of the crystal structure of $\mathbf{8}$, the theoretically derived gas-phase ones agree nicely and show that the CAM-B3LYP method associated with 6-311G(d,p) is well suited to the prediction and evaluation of the geometries of the studied molecules.

UV/Vis and Luminescence Spectra/DFT Calculations

Selected photophysical data for 7–10 are compiled in Table 2; all compounds exhibit intense blue luminescence under UV irradiation. Compounds 11 and 12 featuring 1,3-diphenyl-1,3,2-benzodiazaborole groups and the carbazoles 15 and 16 are also considered for comparison.

The UV/Vis spectra of 7–10 (in cyclohexane) show intense bands at $\lambda = 294-296$ nm ($\varepsilon = 20800-$ 33400 Lmol⁻¹cm⁻¹) in addition to a less intense band at λ = 340–344 nm ($\varepsilon = 11600-17000$ Lmol⁻¹cm⁻¹). In **11**, for comparison, absorption bands at $\lambda = 297$ ($\varepsilon =$ 11900 Lmol⁻¹cm⁻¹) and 344 nm ($\varepsilon = 4400$ Lmol⁻¹cm⁻¹) were measured and are identical to those in the fluorinated derivatives as well as in carbazoles **15** and **16** (Figure 4).

Figure 4. Carbazoles 15 and 16.

The positions of these absorptions in THF and CH_2Cl_2 solutions are virtually the same. The absence of solvatochromism points to a minor change of dipole moment of these compounds during the absorption. This observation is in accord with local transitions without the participation of the benzodiazaborolyl unit. In the luminescence spectrum of **7** in cyclohexane, there is a strong band at $\lambda = 358$ nm (Stokes shift 1200 cm⁻¹), which in the more polar solvents THF or CH_2Cl_2 is redshifted to $\lambda = 395$ (Stokes shift 4000 cm^{-1}) and 407 nm (Stokes shift 4800 cm^{-1}), respectively. These Stokes shifts as well as the solvatochromism are consistent with an excited state of increased polarity as the result of an intramolecular charge transfer (CT). In contrast to this, the non-fluorinated analogue 11 shows an emission at $\lambda = 354$ nm in cyclohexane (Stokes shift 600 cm⁻¹) with virtually no solvatochromism (THF: λ = 355 nm, Stokes shift 900 cm⁻¹; CH₂Cl₂: λ = 358 nm, Stokes shift 1200 cm⁻¹). A similar situation was observed with *p*bromophenylcarbazole 15 ($\lambda = 350-255$ nm; Stokes shift $500-900 \text{ cm}^{-1}$) These differences may be explained by the nature of the transitions, which in the case of 11 and 15 are local transitions within the carbazole part, whereas a CT from the carbazole to the benzodiazaborole occurs in 7. The formal replacement of the phenylene spacer in 7 by the thiophene-2,5-diyl bridge in 8 did not change the absorptions in the UV/Vis spectra significantly (cyclohexane: $\lambda = 295$, 340 nm; THF: $\lambda = 294$, 340 nm; CH₂Cl₂: $\lambda = 294$, 340 nm). Here, solvatochromism is again virtually absent. In the luminescence spectrum of 8, however, the emission band in c- C_6H_{12} is markedly redshifted to $\lambda = 394$ nm (Stokes shift 4000 cm^{-1}). This band is more sensitive to the polarity of the solvent and is redshifted to $\lambda = 405 \text{ nm}$ (Stokes shift 4900 cm⁻¹) in THF and $\lambda = 411$ nm (Stokes shift 5300 cm⁻¹) in CH₂Cl₂.

In the benzodiazaborole derivatives **9** and **10**, the exchange of both *N*-pentafluorophenyl substituents by two 2,3,5,6-tetrafluoro-4-pyridyl groups had no significant influence on the low-energy and solvent-insensitive absorptions in the UV/Vis spectra. However, the luminescence spectra are somewhat different and merit special comments. In c-C₆H₁₂, the phenylene-bridged species **9** displays a single emission band at $\lambda = 377$ nm (Stokes shift 2900 cm⁻¹), which is bathochromically shifted in comparison to that of the C₆F₅ analogue **7**. However, the two emissions are recorded at $\lambda = 354$ and 418 nm in THF and $\lambda = 356$ and 414 nm in CH₂Cl₂. The Stokes shifts for the low-energy emissions, which correspond to intramolecular charge-transfer transitions, are 5300 and 5600 cm⁻¹.

In derivative **10**, which features the thiophene-based linker, two emissions are also observed in cyclohexane at λ = 357 nm and 410 nm. They are redshifted to λ = 366 and 428 nm in THF and λ = 367 and 431 nm in CH₂Cl₂. The corresponding Stokes shifts are 5000, 6200, and 6300 cm⁻¹. To reach a deeper understanding of this phenomenon, the luminescence spectra of **9** and **10** were recorded in a number of solvents of different orientation polarization (Figure 5, Table 3).

From inspection of the emission bands of **10** in various solvents, it is clear that the band at $\lambda \approx 360$ nm increased in intensity with increasing polarity of the solvent, accompanied by a weak solvatochromism. Usually, the CT emissions of known benzodiazaboroles are quenched in acetonitrile because of adduct formation. Here, however, for the first time, the CT band at $\lambda = 447$ nm is clearly more prominent the high-energy band at $\lambda = 381$ nm.

www.eurjic.org

Table 2. Selected photophysical data of 7–12, 15, and 16.

с. 7 Т С	:-С ₆ H ₁₂ ГНF	296 344	33800					
7 T	ГНF		29100	26600 17000	358	27900	1200	79
C		297 344	33700 29100	18200 8300	395	25100	4000	15
	CH ₂ Cl ₂	297 344	33700 29100	25400 10000	407	24300	4800	26
C	$-C_6H_{12}$	294 340	34000 29400	23700 15600	394	25400	4000	14
8 T	ГНF	294 340	34000 29400	24000 16300	405	24500	4900	9
C	CH ₂ Cl ₂	294 340	34000 29400	17300 12000	411	24100	5300	18
C	c-C ₆ H ₁₂	295 344	33900 29100	20800	377	26200	2900	47
9 T	ГНГ	296 344	33800 29100	15300 6400	354 418	23600	5300	7
C	CH ₂ Cl ₂	296 344	33800 29100	25400 10400	356 414	23900	5600	2
C	c-C ₆ H ₁₂	295 340	33900 29400	33400 11600	357 410	24400	5000	16
10 T	ГНF	295 340	33900 29400	36500 15600	366 428	23200	6200	3
C	CH ₂ Cl ₂	295 341	33900 29300	34000 15900	367 431	23100	6300	2
C	$-C_6H_{12}$	297 344	33700 29100	11900 4400	353	28300	600	79
11 T	ΓHF	297 345	33700 29000	21500 8400	355	28100	900	21
C	CH ₂ Cl ₂	297 345	33700 29000	14700 4900	358	27800	1200	38
C	c-C ₆ H ₁₂	296 328	33800 30500	22600 9900	386	25500	5200	13
12 T	ГНГ	296 330	33800 30300	28600 11200	388	25300	5000	14
C	CH ₂ Cl ₂	297 330	33700 30300	15400 10700	396	25000	5300	18
C	$c - C_6 H_{12}$	297 344	33700 29100	18700 3600	350	28600	500	11
15 T	ΓHF	297 344	33700 29100	23000 4100	353	28300	800	12
C	CH ₂ Cl ₂	297 344	33700 29100	25100 4400	355	28200	900	8
C	e-C ₆ H ₁₂	296 339	33800 29500	26100 3600	356	28100	1400	3
16 T	ГНF	296 339	33800 29500	20300 3200	364	27300	2200	2
C	CH ₂ Cl ₂	296 341	33800 29300	24900 3900	370	26900	2400	2

In the luminescence spectra of 9, a more pronounced solvatochromism in addition to high-energy emissions at $\lambda =$ 354 and 356 nm were observed in THF and CH₂Cl₂. In contrast, in acetonitrile only one emission at $\lambda =$ 360 nm was recorded. The high-energy emissions in 9 and 10 appeared in the region in which the emissions of carbazoles 15 and 16 ($\lambda =$ 350–355 nm and 356–370 nm) occurred.

The fluorescence at $\lambda = 355$ nm of carbazole **15** in CH₂Cl₂ (Table 4) has a lifetime of $\tau = 3.67$ ns, which reflects a local transition within the carbazole. The high-energy

emission band of **9** in CH₂Cl₂ at $\lambda = 356$ nm has a lifetime of $\tau = 3.69$ ns and, thus, belongs to the same local transition. The single emission of **9** in cyclohexane at $\lambda = 376$ nm and the band at $\lambda = 414$ nm in the emission spectrum of **9** in CH₂Cl₂ have similar lifetimes ($\tau = 2.51$ and 2.45 ns, respectively) and are assigned to the same intramolecular CT emission from the benzodiazaborole back to the carbazole. It is further remarkable that the CT-emission bands of **9** in THF and CH₂Cl₂ have long tails in comparison to those in the other solvents under investigation. One possible

Pages: 13

Figure 5. Emissions of 9 and 10 in solvents of increasing orientation polarization.

Table 3. Emission maxima [nm] of 9 and 10 in solvents of increasing orientation polarity

	c-C ₆ H ₁₂	Toluene	CHCl ₃	THF	CH_2Cl_2	$\mathrm{CH}_3\mathrm{CN}$
9	377	400	417	354, 420	356, 414	360
10	557, 410	556, 425	505, 420	500, 428	507, 451	301, 447

explanation for this could be a weak transition from the benzodiazaborole ring to the electron-withdrawing tetrafluoropyridyl substituents. For example, in the fluorescence spectrum of 2-bromo-1,3-bis(tetrafluoropyridyl)-1,3,2benzodiazaborole, emissions at $\lambda = 477$ nm in c-C₆H₁₂ and $\lambda = 502 \text{ nm}$ in CH₂Cl₂ of low intensity ($\Phi_{\rm F} \approx 1\%$) were observed. In addition, a fluorescence spectrum of solid 9 was measured by means of the integrating-sphere method, whereby an emission maximum appeared at $\lambda = 386$ nm. The emission band had a large tail towards lower energies and a quantum yield ($\Phi_{\rm F}$) of 5%. The band is slightly redshifted when compared with that of 9 in cyclohexane solution. Despite the assignment of the respective emission bands to local and charge-transfer transitions the occurrence of the additional maxima in polar solvents such as THF or CH₂Cl₂ deserves further explanation. Therefore, emission spectra were recorded at varying concentrations. However, no significant changes or new bands were observed, and the formation of excimers or packing effects in the solid can be excluded. Solutions of 9 in methanol, 2propanol, pyridine, triethylamine, and dimethylsulfide, which usually react with a diazaborole, only show the highenergy emission at $\lambda \approx 355$ nm, which clearly agrees with the quench of the CT emission. Finally, a toluene solution of 9 was combined in portions with CH₂Cl₂. At a toluene/ dichloromethane ration of 2:1 the emission band shifts slightly to larger wavelengths. Thus, a Lewis acid-base adduct of 9 with CH₂Cl₂ seems unlikely. The appearance of the two emissions of 9 in pure CH_2Cl_2 or THF are presumably because the polarity of the solvent cage stabilizes a geometry in which CT transitions from the carbazole to the benzodiazaborole and from the B/N-heterocycle to the tetrafluoropyridine are observable in addition to the local π - π * transition in the *N*-phenylcarbazole part.

Table 4. Fluorescence lifetimes of 9 and 15.

	Solvent	Wavelength [nm]	Lifetime [ns]
9	СуН	376	2.51
	CH_2Cl_2	356	3.69
	CH_2Cl_2	414	2.45
15	CH_2Cl_2	355	3.67

The calculated absorption maxima from time-dependent DFT (TD-DFT) computations on 7-11 and the dipole moment of ground and first excited states are displayed in Table 5. The most intense absorption is calculated for 11 at 281.1 nm and corresponds to the energy of the HOMO-LUMO+1 transition. This band is observed in the UV/Vis spectrum as the most intense band at $\lambda = 297$ nm, and the calculated small ground state dipole moment μ_g (0.655 D) explains the observed absence of solvatochromism for this compound. For 7, the most intense absorption corresponding to the HOMO-LUMO transition is calculated at 289.7 nm for the experimentally observed $\lambda = 296$ nm, and the change of the ground state dipole moment upon excitation is not significant ($\mu_g = 1.043 \text{ D}$; $\mu_{exc} = 1.417 \text{ D}$). For 8, 9, and 10, this lowest-energy absorption is calculated at the highest wavelength (302.7, 298.2, and 310.0 nm, respectively) if compared to 7 or 11. In comparison with the experimental values, the measured absorption values for 7 and 11 (in c-C₆H₁₂) are redshifted by 6.3 and 15.9 nm, respectively, whereas the calculated absorption maximum of 8, 9, and 10 are blueshifted by 8.7, 3.2, and 15.0 nm, respectively. For these three molecules, the calculated ground state dipole moments μ_g are small (in order of increasing strength: 8 1.005 D, 10 1.541 D, 9 1.567 D), but these dipole moments change significantly upon excitation of the ground state to the first excited state in 9 (9.593 D), 8 (9.894 D), and 10 (10.756 D) and reflect a significant charge transfer upon excitation.

These values are obviously underestimated and deviate significantly from the experimentally determined transition dipole moments by means of the Lippert-Mataga method (7 21.4 D. 8 14.7 D, 9 19.9 D, 10 20.7 D).^[13] The calculated dipole moments are derived in the gas phase with solvation effect neglected, which may cause these deviations.

Table 5. Comparison of [CAM-B3LYP/6-311+G(d,p)] calculated data for optimized geometries of 7–11 and observed UV absorption maxima (in c-C₆H₁₂) [nm]; calculated values of dipole moment of ground (μ_g) and first excited (μ_{exc}) states [D].

Compound.	$\lambda_{\rm max}$ (calcd.)	Oscillator strength (f)	λ_{\max} (exp)	$\Delta \lambda_{\max}$ (calc – exp)	Ground state dipole moment (μ_g)	Excited state dipole moment (μ_{exc})	Transition dipole moment (exp)
7	289.7	0.27	296	-6.3	1.043	1.417	21.4
8	302.7	0.29	294	8.7	1.005	9.894	14.7
9	298.2	0.40	295	3.2	1.567	9.593	19.9
10	310.0	0.23	295	15.0	1.541	10.756	20.7
11	281.1	0.50	297	-15.9	0.655	2.519	_

The [CAM-B3LYP/6-311G(d,p)] calculated MO energies ε^{KS} (LUMO+2, LUMO+1, LUMO, HOMO, HOMO–1, HOMO–2) of 7–11 as well as the HOMO–LUMO gap ($\Delta_{\text{H-L}}$) are displayed in Table 6. The LUMOs of 7, 8, and

11 are located at the vacant $2p_z$ orbital of the B atom with contributions from π^* of the arylene unit (phenyl in 7 and 11 or thiophene in 8), whereas the LUMOs of 9 and 10 are mainly located at two 2,3,5,6-tetrafluoro-4-pyridyl groups.

Table 6. [CAM-B3LYP/6-311G(d,p)] calculated MO energies ε^{KS} (LUMO+2, LUMO+1, LUMO, HOMO, HOMO–1, HOMO–2), HOMO–LUMO gap of **7**, **8**, **9**, **10**, and **11**. Contour values are plotted at ±0.04 ebohr³). Element (color): H (white), B (light pink), C (gray), N (dark blue), F (light blue), S (yellow); Ph: phenyl; th: thiophene; crb: carbazole.

	7	8	9	10	11
	+0.046 $\pi^*(Ph)$	+0.010 $\pi^*(Ph)$	-0.183	-0.322	+0.601 $\pi^*(Ph)$
LUMO+2	n i i i i i i i i i i i i i i i i i i i		2p _z *-π*(<i>Ph</i>)	$2p_z^*-\pi^*(th)$	n the second sec
LUMO+1	$-0.109 \pi^*(Ph)$	-0.103 π*(Ph)	$\xrightarrow{-0.667} \pi^*(Ph)$	-0.676 π*(Ph)	+0.324 π*(crb)
LUMO	$-0.217 2p_2^* - \pi^*(Ph)$	-0.412 2p _z *- π*(<i>Ph</i>)	$-0.737 \pi^{*}(Ph)$	-0.818 2p _z *- π*(<i>Ph</i>)	+0.201 2p _z *- π*(<i>Ph</i>)
НОМО	-6.787 π ₁ (crb)	-6.896 π ₁ (crb)	-6.823 π ₁ (crb)	-6.937 π ₁ (crb)	-6.595 π ₁ (crb)
HOMO-1		$-7.295 \pi_2(crb)$	$-7.265 \pi_2(crb)$	$-7.309 \pi_2(crb)$	$-7.100 \pi_3 - \pi_{\text{NBN}}$
НОМО-2	-7.738 π ₃ -π _{NBN}	-7.660 π ₃ -π _{NBN}	$-7.988 \pi_3 - \pi_{\text{NBN}}$	-7.914 π ₃ -π _{NBN}	$-7.104 \pi_2(crb)$
$\Delta_{\text{H-L}}$ (eV: nm)	6.570; 188.7	6.484; 191.2	6.086; 203.7	6.119; 202.6	6.796; 182.4

Pages: 13

The HOMOs in the five molecules correspond to $\pi_1(crb)$ and are located on the carbazole part, whereas the HOMO– 1s are linked with the $\pi_2(crb)$ in 7, 8, 9, and 10. For 11, the latter is located at the benzodiazaborole part. HOMO– 2 involves the benzodiazaborole group in 7–10 or the carbazole group (π_2) in 11. The replacement of the phenyl substituents on the benzodiazaborole nitrogen atoms in 11 by the pentafluorophenyls in 7 leads to a significant stabilization of all ionization energies. This effect is also found from 11 to 9, in which the phenyl groups are replaced by tetrafluoropyridyls. In contrast, the replacement of the spacer from phenyl in 7 or 9 to the thiophene in 8 or 10, respectively, is not significant and the HOMO is only very slightly stabilized in 8 (0.109 eV) and in 10 (0.114 eV) in comparison to those of 7 and 9.

Conclusions

1,3,2-Benzodiazaboroles are ambiguous functionalities when attached to extended organic π -conjugated scaffolds and their properties depend on the nature of the substituents at the nitrogen atoms in the 1- and 3-position. With ethyl and phenyl substituents, these heterocycles mainly appear as π donors in push-pull molecules, whereas with electron-withdrawing groups such as pentafluorophenyl or tetrafluoropyridyl at the N atoms of the benzodiazaborolyl moieties, they experience an "umpolung" transition into π acceptors when linked to carbazole donors through 1,4phenylene or 2,5-thiophenediyl spacers. In keeping with this, the fluorescence spectra of 7–10 show low-energy emission bands resulting from CT transitions with large Stokes shifts and pronounced solvatochromism.

Experimental Section

General: All manipulations were performed under an atmosphere of dry, oxygen-free argon by using Schlenk techniques. All solvents were dried by standard methods and freshly distilled prior to use. N,N'-Bis(pentafluorophenyl)-o-phenylene diamine (1)^[12] and N-(4-bromophenyl)-3,6-di-*tert*-butylcarbazole^[14] were prepared according to literature methods.

Hexafluorobenzene, pentafluoropyridine, hexamethyldisilazane, boron tribromide, triphenylphosphane, chlorotrimethylsilane, and *n*-butyllithium (1.6 M in *n*-hexane) were purchased commercially. NMR spectra were recorded at room temperature with (a) a Bruker Avance III 300 (¹H: 300, ¹¹B: 96, ¹³C: 75, ¹⁹F: 282 MHz) and (b) a Bruker Avance III 500 spectrometer (¹H: 500, ¹¹B: 160, ¹³C: 125, ¹⁹F: 470, ³¹P: 202 MHz) with SiMe₄ (¹H, ¹³C), BF₃·OEt₂ (¹¹B), CFCl₃ (¹⁹F), and 85% H₃PO₄ (³¹P) as external standards. Mass spectra were obtained with a VG autospec sector field mass spectrometer (Micromass).

Photophysical Measurements: For all solution-state measurements, samples were placed in quartz cuvettes of 10×10 mm (Hellma type 111-QS, suprasil, optical precision). Cyclohexane was used as received from commercial sources (p. a. quality), and the other solvents were dried by standard methods prior to use. The concentrations varied from 20 to 70 μ M according to their optical density. Solid sample were prepared by vacuum sublimation on quartz plates ($35 \times 10 \times 1$ mm) by using standard Schlenk equipment and

conditions. Absorption was measured with a UV/Vis double-beam spectrometer (Shimadzu UV-2550) with the solvent as a reference.

The output of a continuous Xe lamp (75 W, LOT Oriel) was wavelength-separated by a first monochromator (Spectra Pro ARC-175, 1800 lines/mm grating, blaze 250 nm) and then used to irradiate a sample. The fluorescence was collected by mirror optics at right angles and imaged on the entrance slit of a second spectrometer; astigmatism was corrected at the same time. The signal was detected by a back-thinned CCD camera (RoperScientific, 1024×256 pixels) in the exit plane of the spectrometer. The resulting images were spatially and spectrally resolved. In the next step, an averaged fluorescence spectrum was calculated from the raw images and stored in the computer. This process was repeated for different excitation wavelengths. The result is a two-dimensional fluorescence pattern with the excitation wavelength on the *y* axis and the emission wavelength on the x axis. The wavelength range is $\lambda_{ex} = 230$ -430 nm (in 1 nm increments) for the UV light and $\lambda_{\rm em}$ = 305– 894 nm for the detector. The time to acquire a complete excitation emission spectrum (EES) is typically less than 15 min. Post-processing of the EES includes subtraction of the dark current background, conversion of pixel to wavelength scales, and multiplication with a reference file to take the varying lamp intensity as well as grating and detection efficiency into account. The quantum yields were determined against p-bis(5-phenyl-2-oxazolyl)benzene (PO-POP, $\Phi_{\rm F} = 0.93$) as the standard.

The solid-state fluorescence was measured by addition of an integrating sphere (Labsphere, coated with Spectralon, $\emptyset = 12.5$ cm) to the existing experimental setup. At the exit slit of the first monochromator, the exciting light was transferred into a quartz fiber (LOT Oriel, LLB592). It passed a condenser lens and illuminated a 1 cm² area on the sample in the centre of the sphere. The emission and exciting light was imaged by a second quartz fiber on the entrance slit of the detection monochromator. The optics for correction of astigmatism was passed by the light in this way.

The luminescence lifetimes of **9** and **15** were measured with a timecorrelated single-photon counting apparatus (TCSPC, Horiba Jobin Yvon FluoroHub, light source: Nano-LED280, detector: Photomultiplier TBX).

Computational Details: All calculations were performed by using the Gaussian $09^{[15]}$ program package with the 6-311G(d,p) basis set, except for the calculations of UV absorptions for which the 6-311+G(d,p) basis set was applied. DFT has been shown to predict various molecular properties successfully.^[16] All geometry optimizations were performed with the CAM-B3LYP^[17] functional and were followed by frequency calculations to verify that the stationary points obtained are true energy minima. The TD-DFT^[18] approach provides a first principals method for the calculation of excitation energies within a density functional context taking into account the low-lying ion calculated by Δ SCF method.

N,*N*[']-**Bis(tetrafluoro-4-pyridyl)**-*o*-phenylenediamine (2): Similarly to ref.^[12], a cold THF solution (150 mL, -78 °C) of *o*-phenylenediamine (5.0 g, 46 mmol) was lithiated and combined with pentafluoropyridine (15.59 g, 10.1 mL, 92.2 mmol). After work-up, the brown solid residue was sublimed at 1×10^{-1} bar and 140 °C. Crude 2 was collected as a yellow sublimate and was subsequently purified by crystallization from benzene (250 mL) to afford 12.5 g of analytically pure 2 as a pale yellow solid (67% yield). ¹H NMR (300 MHz, CDCl₃): $\delta = 6.19$ (br. s, 2 H, N*H*), 7.16 (m, 2 H, C*H*=CHCH=C*H*), 7.28 (m, 2 H, CH=C*H*C*H*=C*H*) ppm. ¹H NMR (300 MHz, C₆D₆): $\delta = 5.15$ (br. s, 2 H, N*H*), 6.42 (m, 2 H, C*H*=CHCH=C*H*), 6.78 (m, 2 H, CH=C*H*C*H*=C*H*) ppm. ¹³C{¹H} NMR (125 MHz, CDCl₃): $\delta = 122.9$ (s, *C*H=CHCH=*C*H), 126.4

(s, CH=*C*H*C*H=CH), 132.0 (s, N₂C₂), 132.7 [dm, ${}^{1}J_{C,F} = 235$ Hz, C₅F₄N], 144.1 (dm, ${}^{1}J_{C,F} = 240$ Hz, C₅F₄N) ppm. 19 F NMR (282 MHz, CDCl₃): $\delta = -155.8$ (m, 4 F, *o*-F), -92.1 (m, 4 F, *m*-F) ppm. 19 F NMR (282 MHz, C₆D₆): $\delta = -155.8$ (m, 4 F, 3,5-F), -92.1 (m, 4 F, 2,6-F) ppm. MS (EI): *m*/*z* (%) = 406.1 (100) [M]⁺, 367.1 (20) [M - 2F]⁺, 236.1 (31) [M - C₅F₄N - HF]⁺. C₁₆H₆F₈N₄ (406.23): calcd. C 47.31, H 1.49, N 13.79; found C 47.16, H 1.39, N 13.69.

N-(4'-Trimethylsilylphenyl)-3,6-di-tert-butylcarbazole (3): A chilled solution (-78 °C, 2-propanol/liquid N2 bath) of N-(4-bromophenyl)-3,6-di-tert-butylcarbazole (1.03 g, 2.4 mmol) in THF (20 mL) was combined with a solution of tert-butyllithium in npentane (3 mL, 4.8 mmol), and the 2-propanol/liquid N₂ bath was allowed to slowly warm to 0 °C. The mixture was recooled to -78 °C and a sample of chlorotrimethylsilane (0.32 g, 2.9 mmol) was added dropwise. The solution was warmed to room temperature before the addition of water (10 mL) and THF (30 mL). The organic layer was separated and washed with brine. The organic phase was dried with Na2SO4, and the solvent was removed in vacuo to afford pure 3 (0.98 g, 2.28 mmol, 95% yield) as a colorless solid. ¹H NMR (500 MHz, CDCl₃): $\delta = 0.38$ [s, 9 H, Si(CH₃)₃], 1.49 (s, 18 H, *t*Bu), 7.41 (d, ${}^{3}J_{H,H}$ = 8.6 Hz, 2 H, *t*BuCCHCHC), 7.48 (dd, ${}^{3,4}J_{H,H}$ = 8.6, 1.7 Hz, 2 H, *t*BuCCHCHC), 7.57 (d, ${}^{3}J_{H,H}$ = 8.1 Hz, 2 H, NCCHCHCSi), 7.74 (d, ${}^{3}J_{H,H}$ = 8.1 Hz, 2 H, NCCHCHCSi), 8.16 (d, ${}^{4}J_{H,H}$ = 1.7 Hz, 2 H, *t*BuCCHC) ppm. ¹³C{¹H} NMR (125 MHz, CDCl₃): $\delta = -0.8$ [s, Si(CH₃)₃], 32.2 [s, C(CH₃)₃], 34.9 [C(CH₃)₃], 109.5 (s, tBuCCHCHC), 116.3 (s, tBuCCHC), 123.7 (s, tBuCCHCHC), 125.9 (s, NCCHCHCSi), 134.9 (s, NCCHCHCSi), 138.8 (s, NCCHCHCSi), 123.5,139.22, 142.9 (3s, *t*BuCCHCC) ppm. MS (EI): *m*/*z* (%) = 427.3 (80) [M]⁺, 412.2 (100) [M - Me]⁺. C₂₉H₃₇NSi (427.70): calcd. C 81.44, H 8.72, N 3.27; found C 81.69, H 9.07, N 3.25.

N-(5'-Trimethylsilylthien-2-yl)-3,6-di-tert-butylcarbazole (4): A solution of *n*-butyllithium in *n*-hexane (6.7 mL, 10.7 mmol) was slowly added at room temperature to a well-stirred solution of N-(2'-thienyl)-3,6-di-tert-butylcarbazole (3.9 g, 10.7 mmol) in diethyl ether (100 mL). The mixture was stirred for 1 h at 20 °C before the addition of chlorotrimethylsilane (1.2 g, 11.0 mmol). After 16 h, water (50 mL) and diethyl ether (80 mL) were added. The organic layer was washed with brine and dried with Na₂SO₄. The solvent was removed in vacuo, and the residue was crystallized from ethanol to yield 4 (2.44 g, 5.9 mmol,55%) as pale yellow needles. ¹H NMR (500 MHz, CDCl₃): $\delta = 0.46$ [s, 9 H, Si(CH₃)₃], 1.55 (s, 18 H, *t*Bu), 7.28 (d, ${}^{3}J_{H,H}$ = 3.5 Hz, 1 H, NCCHCHCS), 7.35 (d, ${}^{3}J_{H,H}$ = 3.5 Hz, 1 H, NCCHCHCS), 7.56 (m, 4 H, tBuCCHCHC), 8.20 (d, ${}^{4}J_{H,H} = 1.7 \text{ Hz}, 2 \text{ H}, t\text{BuCCHC}) \text{ ppm. } {}^{13}\text{C}{}^{1}\text{H}$ NMR (125 MHz, CDCl₃): $\delta = -0.04$ [s, Si(CH₃)₃], 32.1 [s, C(CH₃)₃], 34.8 [s, C(CH₃)₃], 109.8 (s, tBuCCHCHC), 116.2 (s, tBuCCHC), 123.9 tBuCCHCHC), 124.7 (s, NCCHCHCS), 133.0 (s, (s, NCCHCHCS), 138.5 (s, NCCHCHCS), 123.5, 140.2, 143.5 (3s, *t*Bu*C*CH*CC*), 145.4 (s, N*C*CHCHCS) ppm. MS (EI): *m*/*z* (%) = 433.2 (100) $[M]^+$, 418.2 (95) $[M - Me]^+$. $C_{27}H_{35}NSSi$ (433.72): calcd. C 74.77, H 8.13, N 3.23; found C 74.47, H 8.16, N 3.33.

N-[4'-Dibromo(triphenylphosphonio)borato-phenyl]-3,6-di-*tert*-butylcarbazole (5): A mixture of 3 (0.71 g, 1.64 mmol) and boron tribromide (0.43 g, 1.7 mmol) in CH_2Cl_2 (30 mL) was stirred for 16 h at room temperature. The solvent and volatile components were removed in vacuo, and the residue was redissolved in CH_2Cl_2 (30 mL). A solution of PPh₃ (0.446 g, 1.7 mmol) in CH_2Cl_2 (10 mL) was added to this mixture and stirring was continued for 2 h at room temperature. The solvent was removed to give crude 5 as a colorless solid, which was directly used for synthesis of 7. ¹¹B{¹H}NMR (C₆D₆): δ = -4.8 ppm. ³¹P NMR (C₆D₆): δ = -4.1 ppm.

N-[5'-Dibromo(triphenylphosphonio)borato-thien-2-yl]-3,6-di-*tert*butylcarbazole (6): Analogously, the mixture of 4 (0.71 g, 1.64 mmol) and BBr₃ (0.43 g, 1.7 mmol) in CH₂Cl₂ (30 mL) was stirred for 2 h at ambient temperature. The volatile compounds were removed in vacuo. The residue was dissolved in CH₂Cl₂ (30 mL), and a solution of PPh₃ (0.446 g, 1.7 mmol) in CH₂Cl₂ (10 mL) was added; stirring was continued for another 2 h. Crude **6** was obtained after removal of the solvent and was directly employed for further transformations. ¹¹B{¹H} NMR (C₆D₆): δ = 7.0 (bs) ppm. ³¹P NMR (C₆D₆): δ = -4.2 ppm.

2-N-[4'-(3'',6''-Di-tert-butylcarbazolyl)phenyl]-1,3-bis(pentafluorophenyl)-1,3,2-benzodiazaborole (7): A slurry of 5 (1.291 g, 1.64 mmol) in toluene (30 mL) was combined with a solution of 1 (0.609 g, 1.5 mmol) in toluene (20 mL) and 2,2,6,6-tetramethylpiperidine (0.494 g, 3.5 mmol). The reaction mixture was stirred for 30 h at 100 °C. The mixture was cooled to ambient temperature and was filtered. The solvent and volatile components were removed from the filtrate in vacuo. Triphenylphosphane was separated from the residue by sublimation at 100 °C. Extraction of the residue with *n*-hexane afforded 7 (0.627 g, 0.78 mmol, 52% yield). ¹H NMR (500 MHz, CDCl₃): δ = 1.49 [s, 18 H, C(CH₃)₃], 6.91 (m, 2 H, CH=CHCH=CH), 7.20, (m, 2 H, CH=CHCHCH), 7.40 (d, ${}^{3}J_{H,H} = 9$ Hz, NCCHCHCB), 7.47 (d, ${}^{3}J_{H,H} = 9$ Hz, *t*BuCCHC*H*), 7.50 (dd, ${}^{3,4}J_{H,H} = 9$, 2 Hz, tBuCCHCH) 7.54 (d, ${}^{3}J_{H,H} = 9$ Hz, NCCHCHCB), 8.15 (d, ${}^{4}J_{H,H}$ = 2 Hz, *t*BuCCHC) ppm. ${}^{13}C{}^{1}H$ NMR (125 MHz, CDCl₃): δ = 31.9 [s, C(CH₃)₃], 34.7 [s, C(CH₃)₃], 109.2 (s, CH=CHCH=CH), 110.5 (s, tBuCCHCHC), 116.2 (s, tBuCCHC), 122.0 (s, CH=CHCH=CH), 123.7 (s, tBuCCHCHC), 126.1 (s, NCCHCHCB), 133.9 (s, NCCHCHCB), 135.9 (s, N₂C₂), 138.6 (s, NCCHCHCB), 123.6, 140.1, 143.3 (3s, *t*Bu*C*CH*CC*), 137.0 (dm, ${}^{1}J_{C,F}$ = 256 Hz, C₆F₅), 140.3 (dm, ${}^{1}J_{C,F}$ = 257 Hz, C₆F₅), 144 (dm, ${}^{1}J_{C,F}$ = 250 Hz, C₆F₅) ppm. ${}^{11}B{}^{1}H{}$ NMR (160 MHz, CDCl₃): δ = 30.7 ppm. ¹⁹F NMR (470 MHz, CDCl₃): δ = -144.8 (m, 4 F, 2,6-F), -154.1 (t, $J_{F,F}$ = 24 Hz, 2 F, 4-F), -160.6 (m, 4 F, 3,5-F) ppm. MS (EI): $m/z (\%) = 803.3 (99) \text{ [M]}^+$, 788.3 (100) $[M - Me]^+$, 394.1 (20) $[BN_2C_6(C_6F_5)_2]^+$. $C_{44}H_{32}BF_{10}N_3$ (803.54): calcd. C 65.77, H 4.01, N 5.23; found C 65.68, H 3.91, N 5.13.

2[5'-(3'',6''-Di-tert-butylcarbazolyl)thien-2'-yl]-1,3-bis(pentafluorophenyl)-1,3,2-benzodiazaborole (8): Analogously to the preparation of 7, a mixture of adduct 6 (1.301 g, 1.64 mmol), 1 (0.609 g, 1.5 mmol), and 2,2,6,6-tetramethylpiperidine (0.594 g, 3.50 mmol) in toluene (50 mL) was stirred for 16 h at 100 °C. The mixture was cooled to ambient temperature and filtered. The solvent was removed from the filtrate, and PPh3 was removed from the solid residue by sublimation at 100 °C. The residue was triturated with nhexane, and the filtered *n*-hexane solution was evaporated to dryness. A second sublimation at 120 °C was necessary to remove residual PPh₃. Product 8 was obtained as a pure colorless solid (0.546 g, 0.67 mmol, 45%). ¹H NMR (C_6D_6) : $\delta = 1.34$ [s, 18 H, $C(CH_3)_3$] 6.65 (m, 2 H, CH=CHCH=CH), 6.85 (d, ${}^{3}J_{H,H}$ = 4 Hz, 1 H, NCCHCHCS), 7.03 (d, ${}^{3}J_{H,H}$ = 4 Hz, 1 H, NCCHCHCS) 7.05 (m, 2 H, CH=CHCH=CH), 7.38 (s, 4 H, tBuCCHCHC) 8.20 (s, 2 H, *t*BuCC*H*C) ppm. ¹³C{¹H} NMR (C₆D₆): δ = 31.6 [s, C(CH₃)₃], 34.4 [s, C(CH₃)₃], 109.7 (s, CH=CHCH=CH), 110.5 (s, *t*BuCCH*C*HC), 116.3 (s, *t*BuC*C*HC), 122.3 (s, CH=*C*H*C*H=CH), 124.2 (s, tBuCCHCHC), 124.5 (s, NCCHCHCS), 132.9 (s, NCCHCHCS), 136.1 (s, N₂C₂), 124.2, 139.9, 144.5 (3s, *t*Bu*C*CH*CC*), 137.0 (dm, ${}^{1}J_{C,F}$ = 255 Hz, C₆F₅), 140.5 (dm, ${}^{1}J_{C,F}$ = 254 Hz, C_6F_5), 144.5 (dm, ${}^1J_{C,F}$ = 252 Hz, C_6F_5), 146.6 (s, SCN)

ppm. ¹¹B{¹H} NMR (C₆D₆): δ = 27.7 ppm. ¹⁹F NMR (C₆D₆): δ = -145.2 (m, 4 F, 2,6-F), -153.3 (t, 2 F, 4-F), 160.6 (m, 4 F, 3,5-F) ppm. MS (EI): *m/z* (%) = 809.3 (100) [M]⁺, 794.3 (82) [M - Me]⁺, 738.2 (12) [M - 2Me - 2HF]⁺. C₄₂H₃₀BF₁₀N₃S (809.57): calcd. C 62.31, H 3.74, N 5.19; found C 60.63, H 4.06, N 4.89.

2-N-[4'-(3'',6''-Di-tert-butylcarbazolyl)phenyl]-1,3-bis(tetrafluoropyridyl)-1,3,2-benzodiazaborole (9): A mixture of 5 (1.291 g, 1.64 mmol), 2 (0.609 g, 1.50 mmol), and 2,2,6,6-tetramethylpiperidine (0.494 g, 3.5 mmol) in toluene (50 mL) was stirred for 48 h at 100 °C. After similar work-up, the colorless residue was continuously extracted with *n*-hexane over 16 h, whereby product 9 precipitated from the extract as a colorless solid (0.404 g, 0.53 mmol, 35%). ¹H NMR (500 MHz, C₆D₆): δ = 1.39 [s, 18 H, C(CH₃)₃], 6.55 (m, 2 H, CH=CHCH=CH), 7.01, (m, 4 H, CH=CHCH=CH and NCCHCHCB), 7.17 (d, ${}^{3}J_{H,H}$ = 4 Hz, 2 H, NCCHCHCB), 7.26 [d, ${}^{3}J_{H,H}$ = 8.6 Hz, *t*BuCCHC*H*], 7.35 (dd, ${}^{3}J_{H,H}$ = 8.6, 1.8 Hz, *t*BuCC*H*CH), 8.31 (d, ${}^{4}J_{H,H}$ = 1.8 Hz, *t*BuCC*H*C) ppm. ${}^{13}C{}^{1}H$ NMR (125 MHz, CDCl₃): δ = 30.0 [s, C(CH₃)₃], 34.7 [s, C(CH₃)₃], 109.8 (s, CH=CHCH=CH), 111.4 (s, tBuCCHCHC) 116.5 (s, tBuCCHC), 122.9 (s, CH=CHCH=CH), 124.0 (s, tBuCCHCHC), 125.7 (s, NCCHCHCB), 133.9 (s, NCCHCHCB), 135.4 (s, N₂C₂), 138.6 (dm, ${}^{1}J_{C,F}$ = 263 Hz, C₅F₄N), 144.3 (dm, ${}^{1}J_{C,F} = 240 \text{ Hz}, C_{5}F_{4}N), 124.1, 139.6, 143.0 (3s, tBuCCHCC) ppm.$ ¹¹B{¹H} NMR (160 MHz, C₆D₆): δ = 29.4 ppm. ¹⁹F NMR $(470 \text{ MHz}, \text{ C}_6\text{D}_6)$: $\delta = -87.7 \text{ (m, 4 F, 3,5-F)}, 145.1 \text{ (m, 4 F, 2,6-F)}$ ppm. MS (EI): m/z (%) = 769.3 (89) [M]⁺, 754.3 (100) [M – Me]⁺, 698.2 (16) [M –2Me – 2HF]⁺.

2-[5'-(3'',6''-Di-tert-butylcarbazolyl)thien-2'-yl]-1,3-bis(tetrafluoropyridyl)-1,3,2-benzodiazaborole (10): Prepared analogously to 9 from 6 (1.301 g, 1.64 mmol), 2 (0.609 g, 1.50 mmol), and 2,2,6,6tetramethylpiperidine (0.494 g, 3.50 mmol) in toluene (50 mL) for 72 h at 100 °C, crude product 10 was obtained. The solid was removed in vacuo (1×10^{-6} bar), and the solid was extracted with *n*pentane $(2 \times 40 \text{ mL})$. The combined extracts were stirred for 1 d in the presence of CuI (2 g). After filtration, the solution was concentrated to ca. 20 mL and stored at -20 °C. Within 2 d, product 10 separated as yellow crystals (0.200 g, 0.26 mmol, 16%). ¹H NMR $(500 \text{ MHz}, C_6 D_6)$: $\delta = 1.34 \text{ [s, 18 H, C(CH_3)_3]}, 6.47 \text{ (m, 2 H,}$ CH=CHCH=CH), 6.74 (d, ${}^{3}J_{H,H}$ = 4 Hz, 1 H, NCCHCHCS), 6.86 $(d, {}^{3}J_{H,H} = 4 Hz, 1 H, NCCHCHCS), 6.96 (m, 2 H,$ CH=CHCH=CH), 7.35 (d, ${}^{3}J_{H,H}$ = 8.7 Hz, 2 H, *t*BuCCHCHC), 7.42 (dd, ${}^{3,4}J_{H,H}$ = 8.7, 1.2 Hz, 2 H, *t*BuCCHCHC), 8.20 (s, ${}^{3}J_{H,H}$ = 1.2 Hz, 2 H, *t*BuCCHC) ppm. ${}^{13}C{}^{1}H$ NMR (125 MHz, C₆D₆): $\delta = 30.6$ [s, C(CH₃)₃], 34.4 [s, C(CH₃)₃], 108.6 (s, CH=CHCH=CH), 110.0 (s, tBuCCHCHC), 115.3 (s, tBuCCHC), 121.9 (s, CH = CHCH = CH), 123.3 (s, *t*BuCCHCHC), 124.7 (s, NCCHCHCS), 133.9 (s, NCCHCHCS), 138.6 (dm, ${}^{1}J_{C,F}$ = 263 Hz, C_5F_4N), 144.0 (dm, ${}^1J_{C,F}$ = 231 Hz, C_5F_4N), 138.7 (s, N_2C_2), 123.5, 139.1, 143.2 (3s, *t*BuCCHCC), 146.0 (s, SCN) ppm. ¹¹B{¹H} NMR (160 MHz, C_6D_6): δ = 28.9 ppm. ¹⁹F NMR (282 MHz, C_6D_6): δ = -87.4 (m, 4 F, 3,5-F), -144.7 (m, 4 F, 2,6-F) ppm. MS (EI): m/z (%) $= 775.5 (100) [M]^{+}, 760.5 (94) [M - Me]^{+}.$

2-*N*-[4'-(3'',6''-Di-*tert*-butylcarbazolyl)phenyl]-1,3-diphenyl-1,3,2benzodiazaborole (11): A chilled solution (-78 °C) of *N*-(4-bromophenyl)-3,6-di-*tert*-butylcarbazole (1.00 g, 2.30 mmol) in diethyl ether (50 mL) was treated with an equimolar amount of *n*-butyllithium dissolved in *n*-hexane (1.6 M, 1.44 mL, 2.3 mmol). The reaction mixture was warmed to 0 °C, and was then recooled to -78 °C before a solution of 2-bromo-1,3-diphenyl-1,3,2-benzodiazaborole (0.91 g, 2.3 mmol) in benzene (15 mL) was added. The mixture was stirred for 16 h at ambient temperature, and the solvent and volatile components were removed in vacuo. The obtained solid residue was continuously extracted with n-hexane over 2 d, whereupon product 11 separated as a colorless solid (0.90 g, 1.44 mmol, 63%). ¹H NMR (500 MHz, CDCl₃): δ = 1.50 (s, 18 H, *t*Bu), 7.10 (m, 2 H, CH=CHCH=CH), 7.16 (m, 2 H, CH=CHCH=CH), 7.36 (m, 6 H, tBuCCHCH, NCCHCHCB), 7.46 (m, 8 H, BNPh, m-H Ph, p-H Ph and tBuCCHCH), 7.53 (m, 4 H, BNPh, o-Ph), 8.15 (d, ${}^{4}J_{H.H}$ = 1.7 Hz, 2 H, *t*BuCCHC) ppm. ¹³C{¹H} NMR (125 MHz, CDCl₃): δ = 32.0 [s, C(CH₃)₃], 34.7 [s, C(CH₃)₃], 109.4 (s, CH=CHCH=CH), 110.2 (s, tBuCCHCH), 116.1 (s, tBuCCHC), 120.1 (s, CH=CHCH=CH), 123.4 (s, tBuCCHCH), 125.2 (s, NCCHCHCB), 126.6 (s, NCCH=CHCH), 127.9, 129.4 (2s, NCCH=CHCH), 136.1 (s, NCCHCHCB), 123.5, 140.4, 142.9 (3s, C-carbazole), 137.9 (s, BNC-CHCHCH), 138.5 (s, NCCHCHCB), 138.8 (s, N_2C_2), 144.5 (s, SCN) ppm. ¹¹B{¹H} NMR (160 MHz, CDCl₃): $\delta = 29.2$ ppm. MS (EI): m/z (%) = 623.4 (100) [M]⁺, 608.2 (64) [M - CH₃]⁺. C₄₄H₄₂BN₃ (623.64): calcd. C 84.74, H 6.79, N 6.74; found C 84.18, H 7.17, N 6.71.

Further details of the crystallographic data for **8** are given in Table 7. CCDC-925364 contains the supplementary crystallographic data for this paper. These data can be obtained free of charge from The Cambridge Crystallographic Data Centre via www.ccdc.cam.ac.uk/data_request/cif.

Table 7. Crystallographic data for 8.

Empirical formula	$C_{42}H_{30}BF_{10}N_3S$
$\overline{M_{\rm r} [{\rm gmol}^{-1}]}$	809.56
Crystal dimensions [mm]	$0.08 \times 0.07 \times 0.06$
Crystal system	monoclinic
Space group	$P 2_1/c$
a [Å]	12.9805(4)
b Å	23.2787(10)
c [Å]	12.7744(5)
β[°]	98.854(2)
V[Å ³]	3814.0(3)
Z	4
$\rho_{\rm calcd.} [\rm gcm^{-3}]$	1.410
$\mu [\mathrm{mm}^{-1}]$	0.169
F(000)	1656
Θ [°]	3–25
Reflections collected	44982
Unique reflections	6692
R(int)	0.113
Reflections $[I > 2\sigma(I)]$	4014
Refined parameters	520
GOF	1.009
$R_{\rm F} \left[I > 2\sigma(I) \right]$	0.0520
$wR_{\rm F2}$ (all data)	0.1230
$\Delta \rho_{\text{max/min}} [e \text{\AA}^{-3}]$	0.242/-0.240

Supporting Information (see footnote on the first page of this article): Tables of atomic coordinates for [CAM-B3LYP/6-311G(d,p)] optimized geometries, values of total energies and Lippert–Mataga plots of **7–10**.

a) C. D. Entwistle, T. B. Marder, Angew. Chem. 2002, 114, 3051–3056; Angew. Chem. Int. Ed. 2002, 41, 2927–2931; b) Y. Shirota, J. Mater. Chem. 2000, 10, 1–25; c) S. Yamaguchi, A. Wakayama, Pure Appl. Chem. 2006, 78, 1413–1424; d) F. Jäkle, Coord. Chem. Rev. 2006, 250, 1107–1121; e) F. Jäkle, Chem. Rev. 2010, 110, 3985–4022; f) M. Elbing, G. C. Bazan, Angew. Chem. 2008, 120, 846–850; Angew. Chem. Int. Ed. 2008, 47, 834–838; g) T. W. Hudnall, C.-W. Chiu, F. P. Gabbai, Acc. Chem. Res. 2009, 42, 388–397; h) N. Matsumi, Y. Chujo, Polym. J. 2007, 40, 77–89; i) Z. M. Hudson, S. Wang, Acc. Chem.

www.eurjic.org

Res. 2009, 42, 1584–1596; j) C. D. Entwistle, T. B. Marder, Chem. Mater. 2004, 16, 4574–4585.

- [2] a) M. E. Glogowski, J. L. R. Williams, J. Organomet. Chem.
 1981, 218, 137–146; b) A. Sundararaman, R. Varughese, H. Li, L. N. Zakharov, A. L. Rheingold, F. Jäkle, Organometallics 2007, 26, 6126–6131.
- [3] A. Schulz, W. Kaim, Chem. Ber. 1989, 122, 1863-1868.
- [4] a) C.-H. Zhao, A. Wakamiya, Y. Inukai, S. Yamaguchi, J. Am. Chem. Soc. 2006, 128, 15934–15935; b) H. Li, A. Sundararaman, K. Venkatasubbaiah, F. Jäkle, J. Am. Chem. Soc. 2007, 129, 5792–5793; c) A. Wakamiya, K. Mori, S. Yamaguchi, Angew. Chem. 2007, 119, 4351–4354; Angew. Chem. Int. Ed. 2007, 46, 4273–4276.
- [5] a) L. Weber, Coord. Chem. Rev. 2001, 215, 39–77; b) L. Weber, Coord. Chem. Rev. 2008, 252, 1–31; c) L. Weber, Eur. J. Inorg. Chem. 2012, 5595–5609; d) M. Yamashita, K. Nozaki, J. Synth. Org. Chem. Jpn. 2010, 68, 359–369; e) M. Yamashita, K. Nozaki, Pure Appl. Chem. 2008, 80, 1187–1194; f) M. Yamashita, K. Nozaki, Bull. Chem. Soc. Jpn. 2008, 81, 1377–1392; g) L. Weber, H. B. Wartig, H.-G. Stammler, B. Neumann, Organometallics 2001, 20, 5248–5250; h) L. Weber, H. B. Wartig, H. G. Stammler, B. Neumann, Z. Anorg. Allg. Chem. 2001, 627, 2663–2668; i) L. Weber, I. Domke, W. Greschner, K. Miqueu, A. Chrostowska, P. Baylère, Organometallics 2005, 24, 5455– 5463.
- [6] a) T. Habereder, H. Nöth, Appl. Organomet. Chem. 2003, 17, 525–538; b) L. Weber, I. Domke, J. Kahlert, H.-G. Stammler, Eur. J. Inorg. Chem. 2006, 3419-3424; c) L. Weber, A. Rausch, H. G. Stammler, B. Neumann, Z. Anorg. Allg. Chem. 2004, 630, 2657-2664; d) L. Weber, J. Förster, H.-G. Stammler, B. Neumann, Eur. J. Inorg. Chem. 2006, 5048-5056; e) L. Weber, M. Schnieder, T. C. Maciel, H. B. Wartig, M. Schimmel, R. Boese, D. Bläser, Organometallics 2000, 19, 5791-5794; f) J. M. Murphy, J. D. Lawrence, K. Kawamura, C. Incarvito, J. F. Hartwig, J. Am. Chem. Soc. 2006, 128, 13684-13685; g) Y. Segawa, M. Yamashita, K. Nozaki, Science 2006, 314, 113-115; h) T. B. Marder, Science 2006, 314, 69-70; i) H. Braunschweig, Angew. Chem. 2007, 119, 1990-1992; Angew. Chem. Int. Ed. 2007, 46, 1946-1948; j) Y. Segawa, M. Yamashita, K. Nozaki, Angew. Chem. 2007, 119, 6830-6833; Angew. Chem. Int. Ed. 2007, 46, 6710-6713; k) T. Kajiwara, T. Terabayashi, M. Yamashita, K. Nozaki, Angew. Chem. 2008, 120, 6708-6712; Angew. Chem. Int. Ed. 2008, 47, 6606-6610; 1) Y. Segawa, Y. Suzuki, M. Yamashita, K. Nozaki, J. Am. Chem. Soc. 2008, 130, 16069-16079; m) M. Yamashita, Y. Suzuki, Y. Segawa, K. Nozaki, Chem. Lett. 2008, 37, 802-803; n) T. Terabayashi, T. Kajiwara, M. Yamashita, K. Nozaki, J. Am. Chem. Soc. 2009, 131, 14162-14163; o) K. Nozaki, Y. Arami, M. Yamashita, S.-H. Ueng, M. Malacria, E. Lacôte, D. P. Curran, J. Am. Chem. Soc. 2010, 132, 11449-11451; p) Y. Hayashi, Y. Segawa, M. Yamashita, K. Nozaki, Chem. Commun. 2011, 47, 5888-5890; q) Y. Segawa, M. Yamashita, K. Nozaki, Organometallics 2009, 28, 6234-6242; r) M. Hasegawa, Y. Segawa, M. Yamashita, K. Nozaki, Angew. Chem. 2012, 124, 7062-7066; Angew. Chem. Int. Ed. 2012, 51, 6956-6960; s) N. Dettenrieder, H. M. Dietrich, C. Schädle, C. Maichle-Mössmer, K. W. Törnroos, R. Anwander, Angew. Chem. 2012, 124, 4537-4541; Angew. Chem. Int. Ed. 2012, 51, 4461-4465; t) A. V. Protchenko, K. H. Birjkumar, D. Dange, A. D. Schwarz, D. Vidovic, C. Jones, N. Kaltsoyannis, P. Mountford, S. Aldridge, J. Am. Chem. Soc. 2012, 134, 6500-6503; u) L. M. A. Saleh, K. H. Birjkumar, A. V. Protchenko, A. D. Schwarz, S. Aldridge, C. Jones, N. Kaltsoyannis, P. Mountford, J. Am. Chem. Soc. 2011, 133, 3836-3839; v) S. Li, J. Cheng, Y. Chen, M. Nishiura, Z. Hou, Angew. Chem. 2011, 123, 6484-6487; Angew. Chem. Int. Ed. 2011, 50, 6360-6363; w) D. Tian, J. Jiang, H. Hu, J. Zhang, C. Cui, J. Am. Chem. Soc. 2012, 134, 14666-14669; x) A. Hinchliffe, F. S. Mair, E. J. L. McInnes, R. G. Pritchard, J. E. Warren, Dalton Trans. 2008, 222-233; y) E. Giziroglu, B. Donnadieu, G. Bertrand, Inorg. Chem. 2008, 47, 9751-9753.
- [7] a) A. Chrostowska, M. Maciejczyk, A. Dargelos, P. Baylère, L. Weber, V. Werner, D. Eickhoff, H.-G. Stammler, B. Neumann, Organometallics 2010, 29, 5192-5198; b) L. Weber, J. Halama, V. Werner, K. Hanke, L. Böhling, A. Chrostowska, A. Dargelos, M. Maciejczyk, A.-L. Raza, H.-G. Stammler, B. Neumann, Eur. J. Inorg. Chem. 2010, 5416-5425; c) S. Maruyama, Y. Kawanishi, J. Mater. Chem. 2002, 12, 2245-2249; d) L. Weber, I. Domke, C. Schmidt, T. Braun, H.-G. Stammler, B. Neumann, Dalton Trans. 2006, 2127-2132; e) L. Weber, A. Penner, I. Domke, H. G. Stammler, B. Neumann, Z. Anorg. Allg. Chem. 2007, 633, 563-569; f) L. Weber, D. Eickhoff, V. Werner, L. Böhling, S. Schwedler, A. Chrostowska, A. Dargelos, M. Maciejczyk, H.-G. Stammler, B. Neumann, Dalton Trans. 2011, 40, 4434-4446; g) S. Schwedler, D. Eickhoff, R. Brockhinke, D. Cherian, L. Weber, A. Brockhinke, Phys. Chem. Chem. Phys. 2011, 13, 9301-9310; h) L. Weber, V. Werner, I. Domke, H.-G. Stammler, B. Neumann, Dalton Trans. 2006, 3777-3784; i) L. Weber, V. Werner, M. A. Fox, T. B. Marder, S. Schwedler, A. Brockhinke, H.-G. Stammler, B. Neumann, Dalton Trans. 2009, 2823-2831
- [8] L. Weber, D. Eickhoff, T. B. Marder, M. A. Fox, P. J. Low, A. D. Dwyer, D. J. Tozer, S. Schwedler, A. Brockhinke, H.-G. Stammler, B. Neumann, *Chem. Eur. J.* 2012, 18, 1369–1382.
- [9] L. Weber, H. Kuhtz, L. Böhling, A. Brockhinke, A. Chrostowska, A. Dargelos, A. Maziere, H.-G. Stammler, B. Neumann, *Dalton Trans.* 2012, *41*, 10440–10452.
- [10] L. Weber, J. Kahlert, R. Brockhinke, L. Böhling, A. Brockhinke, H.-G. Stammler, B. Neumann, R. A. Harder, M. A. Fox, *Chem. Eur. J.* 2012, *18*, 8347–8357.
- [11] L. Weber, V. Werner, M. A. Fox, T. B. Marder, S. Schwedler, A. Brockhinke, H.-G. Stammler, B. Neumann, *Dalton Trans.* 2009, 1339–1351.
- [12] M. M. Khusniyarov, K. Harms, O. Burghaus, J. Sundermeyer, B. Sarkar, W. Kaim, J. van Slageren, C. Duboc, J. Fiedler, *Dalton Trans.* 2008, 1355–1365.
- [13] E. Lippert, Z. Elektrochem. 1957, 61, 962-975.
- [14] a) A. Hameurlaine, W. Dahaen, *Tetrahedron* 2003, 44, 957–959;
 b) M. Herm, *PhD. Thesis*, Martin-Luther-Universität Halle-Wittenberg, 2003.
- [15] M. J. Frisch, G. W. Trucks, H. B. Schlegel, G. E. Scuseria, M. A. Robb, J. R. Cheeseman, G. Scalmani, V. Barone, B. Mennucci, G. A. Petersson, H. Nakatsuji, M. Caricato, X. Li, H. P. Hratchian, A. F. Izmaylov, J. Bloino, G. Zheng, J. L. Sonnenberg, M. Hada, M. Ehara, K. Toyota, R. Fukuda, J. Hasegawa, M. Ishida, T. Nakajima, Y. Honda, O. Kitao, H. Nakai, T. Vreven, J. A. Montgomery Jr., J. E. Petralta, F. Ogliaro, M. Bearpark, J. J. Heyd, E. Brothers, K. N. Kudin, V. N. Staroverov, R. Kobayashi, J. Normand, K. Raghavachari, A. Rendell, J. C. Burant, S. S. Iyengar, J. Tomasi, M. Cossi, N. Rega, J. M. Millam, M. Klene, J. E. Knox, J. B. Cross, V. Bakken, C. Adamo, J. Jaramillo, R. Gomperts, R. E. Stratmann, O. Yazyev, A. J. Austin, R. Cammi, C. Pomelli, J. W. Ochterski, R. L. Martin, K. Morokuma, V. G. Zakrzewski, G. A. Voth, P. Salvador, J. J. Dannenberg, S. Dapprich, A. D. Daniels, Ö. Farkas, J. B. Foresman, J. V. Ortiz, J. Cioslowski, D. J. Fox, Gaussian 09, revision A.02, Gaussian, Inc. Wallingford CT, 2009.
- [16] a) R. G. Parr, W. Yang, Functional Theory of Atoms and Molecules, Oxford University Press, New York, 1989; b) M. J. Frisch, G. W. Trucks, J. R. Cheeseman, in: Recent Development and Applications of Modern Density Functional Theory, Theoretical and Computational Chemistry (Ed.: J. M. Semminario), Elsevier, Amsterdam, 1996, vol. 4, p. 679–707.
- [17] T. Yanai, D. Tew, N. Handy, Chem. Phys. Lett. 2004, 393, 51.
- [18] a) R. E. Stratmann, G. E. Scuseria, M. J. Frisch, *J. Chem. Phys.* 1998, 109, 8218; b) M. E. Casida, C. Jamorski, K. C. Casida, D. R. Salahub, *J. Chem. Phys.* 1998, 108, 4439; c) V. Lemierre, A. Chrostowska, A. Dargelos, H. Chermette, *J. Phys. Chem. A* 2005, 109, 8348.

Received: March 8, 2013 Published Online: