

View Article Online View Journal

ChemComm

Accepted Manuscript

This article can be cited before page numbers have been issued, to do this please use: Z. song, Z. Chu, K. Wang and L. Gao, *Chem. Commun.*, 2017, DOI: 10.1039/C7CC00632B.

This is an Accepted Manuscript, which has been through the Royal Society of Chemistry peer review process and has been accepted for publication.

Accepted Manuscripts are published online shortly after acceptance, before technical editing, formatting and proof reading. Using this free service, authors can make their results available to the community, in citable form, before we publish the edited article. We will replace this Accepted Manuscript with the edited and formatted Advance Article as soon as it is available.

You can find more information about Accepted Manuscripts in the **author guidelines**.

Please note that technical editing may introduce minor changes to the text and/or graphics, which may alter content. The journal's standard <u>Terms & Conditions</u> and the ethical guidelines, outlined in our <u>author and reviewer resource centre</u>, still apply. In no event shall the Royal Society of Chemistry be held responsible for any errors or omissions in this Accepted Manuscript or any consequences arising from the use of any information it contains.

rsc.li/chemcomm

Published on 22 February 2017. Downloaded by University of Newcastle on 22/02/2017 21:20:07.

Journal Name

COMMUNICATION

Chiral Crotyl Geminal Bis(silane): A Useful Reagent for Asymmetric Sakurai Allylation by Selective Desilylation-Enabled Chirality Transfer[†]

Accepted 00th January 20xx DOI: 10.1039/x0xx00000x

Received 00th January 20xx,

www.rsc.org/

Zhiwen Chu,^a Kai Wang,^a Lu Gao,^a and Zhenlei Song^{*a, b}

Enantioselective synthesis of SiMe₃/SiPh₂Me-substituted crotyl geminal bis(silane) has been developed. This compound is a useful reagent for $Ph_3C^+B(C_6F_5)_4^-$ -catalyzed asymmetric Sakurai allylation and one-pot Sakurai allylation/Prins cyclization process. Chemoselective desilylation of SiPh₂Me leads to the efficient chirality transfer.

Allylboranes, silanes and stannanes are very important allyl metallic reagents in both academia and industry.¹ Allylation of aldehydes using these reagents has emerged as one of the most powerful methods for controlling the stereochemistry in acyclic structures. Compared with allyl mono-metallic reagents, bimetallic species appear to be more powerful for rapid increasing the structural complexity. These reagents typically play as a linchpin to assemble two electrophiles by sequential functionalization of $C-M^1$ and $C-M^2$ bonds. Based on the position of M¹ and M² on the allyl moiety, allyl bimetallic reagents can be divided into 1, 1-, 1, 2- and 1, 3-types (Scheme 1a). Among them, 1, 1-type is structurally distinct from other two, as two metals share with the same allylic double bond. When two metal moieties are different, the carbon they attached would be a chiral center. The efficiency of chirality transfer would largely depend on the chemoselectivity during the C-M bond cleavage. To this end, most studies have been mainly focused on hetero-bimetallic compounds containing two different metal centers (Scheme 1b, left). The representative combinations include B/Si,² B/Sn³ and Sn/Si,⁴ in which one of the C-M bonds (e.g. C-B bond) is weaker than another (e.g. C-Si bond). Thus, chemoselective eliminating the weaker C-M bond could be achieved, leading to effective enantioselective control in allylation.

Another type of chiral allyl 1, 1-bimetallic reagents is homobimetallic species (Scheme 1b, right). These reagents contain two identical metal centers such as silicon, but with different substituents on them. Imaginably, the chirality transfer would become more challenging than that using hetero-bimetallic reagent, because chemoselective cleaving one of the C–Si bonds is difficult by differentiation of the substituents on silicon. This is probably one of the reasons that little is known about the selectivity issues (i. e. *chemo-, stereo- and enantioselectivity*) in the allylation using allyl geminal bis(silanes), except for Wetter's (optically active, SiMe₃/SiMe₂F),⁵ Lautens' (racemic, SiMe₃/SiMe₂t-Bu)⁶ and our works (racemic, SiMe₃/SiMe₂Ph).^{7a} Their potential values are still unexplored in organic synthesis.

Herein, we report enantioselective synthesis of crotyl geminal bis(silane) (*S*)-**1a** featuring a SiMe₃/SiPh₂Me-substituted quaternary carbon center. This compound proves to be a useful allylsilane reagent for Ph₃C⁺B(C₆F₅)₄⁻catalyzed⁸ Sakurai allylation⁹ to give **2**, or one-pot Sakurai allylation/Prins cyclization process to give pyran **3** with excellent stereo- and enantioselectivity.

Scheme 1. a) Typical allyl bimetallic reagents; b) previously reported chiral allyl 1, 1-bimetallic reagents; c) chiral crotyl geminal bis(silyl) reagent (S)-1a.

The racemic **1a** was initially synthesized by the protocol shown in Scheme 2. Reduction of propargyl alcohol **4** with Red-Al followed by trapping with iodine¹⁰ and silylation of the hydroxyl group afforded vinyl iodide **5** in 85% overall yield. *t*-BuLi-promoted lithium-iodide exchange provided the corresponding vinyl anion, which underwent

^a Key Laboratory of Drug-Targeting and Drug Delivery System of the Education Ministry, West China School of Pharmacy, Sichuan University, Chengdu, 610041 (China). E-mail: zhenleisona@scu.edu.cn

^b State Key Laboratory of Biotherapy, West China Hospital, Sichuan University, Chenqdu, 610041(China)

⁺ Electronic supplementary information (ESI) available: Experimental procedures, characterisation data for new compounds. See DOI: 10.1039/x0xx00000x

COMMUNICATION

Published on 22 February 2017. Downloaded by University of Newcastle on 22/02/2017 21:20:07.

DOI: 10.1039/C7CC00632B

Scheme 2. Reaction conditions of synthesizing racemic (\pm)-1a: a. i) Red-Al, Et₂O, then I₂; ii) Ph₂MeSiCl, DMAP, Et₃N, CH₂Cl₂, 0 °C to rt, 85% (2 steps). b. *t*-BuLi, THF, 95%. c) CH₃C(OEt)₃, CH₃CH₂CO₂H, toluene, 140 °C, 15 h, 95%.

retro-[1, 4]-Brook rearrangement to deliver allylic alcohol **6** in 95% yield.¹¹ The subsequent Johson-Claisen rearrangement of **6** with $CH_3C(OEt)_3$ gave rise to **1a** cleanly in 95% yield.¹² This procedure was also applied successfully to synthesizing analogous crotyl silanes **1b-1e**, which were used for screening the Sakurai allylation conditions (Table 1).

Sakurai allylation of (±)-1a with p-Br-C₆H₄CHO was first examined in CH₂Cl₂ using stoichiometric amount of Lewis acids such as TMSOTf and SnCl₄, or Brønsted acids such as HBF₄. Unfortunately, no desired allylation occurred even at room temperature (Table 1, entry 1). However, we were delighted to find that 0.02 equiv of $Ph_3C^+B(C_6F_5)_4^-$ appeared to be an effective catalyst. Interestingly, chemoselective desilylation of SiPh2Me rather than the generally more reactive SiMe₃ was observed to give Z-anti-homoallylic alcohol (±)-2a in 36% yield as a single isomer. The major by-product was pyran (\pm) -**3a**, which was generated by sequential Prins cyclization of (±)-2a with the second aldehyde (entry 2). This side pathway could be inhibited by decreasing the loading of aldehyde from 1.2 to 1.0 equiv, and switching the solvent from CH₂Cl₂ to CHCl₃. The yield of (±)-2a was improved to 75% (entry 3). In contrast to $Ph_3C^+B(C_6F_5)_4^-$, trityl cation catalyst $Ph_{3}C^{\dagger}PF_{6}$ or $Ph_{3}C^{\dagger}SbCl_{6}$ was either ineffective or partially effective to form (±)-2a (entries 4 and 5). The combination mode of silyl groups also has great impact on the allylation efficiency. As shown in entry 6, a lower yield of 46% was obtained in the reaction of silane 1b featuring a SiMe₃/SiMe₂Ph combination. In addition, no reaction

Table 1 Screening of Sakurai Allylation Conditions and Silyl Combinations.^a

Si ¹ Si ² Me	<i>p</i> -Br-C ₆ H ₄ CHO catalyst solvent, rt	EtO ₂ C	Ar OH	Me Ar ¹¹¹¹ O ¹¹¹ /Ar
(±)-1		(±)- 2a (<i>dr</i> ≥ 95:5) ^b		(±) –3a (<i>dr</i> ≥ 95:5) ^{<i>b</i>}

Entry	(±)-1 (Si ¹ /Si ²)	ArCHO	catalyst	solvent	(±)-2a ^d	(±)- 3 a ^d
		(equiv)	(equiv)			
1	1a (SiMe ₃ /SiPh ₂ Me)	1.2	L.A. or H^+	CH_2CI_2	N.D.	N.D.
2	1a (SiMe ₃ / SiPh ₂ Me)	1.2	[C ⁺]-1 (0.02)	CH_2CI_2	36%	36%
3	1a (SiMe ₃ / SiPh ₂ Me)	1.0	[C ⁺]-1 ^c (0.02)	CHCl₃	75%	0%
4	1a (SiMe ₃ / SiPh ₂ Me)	1.0	$[C^{+}]-2^{c}$ (0.02)	CHCl₃	N.R	N.R.
5	1a (SiMe ₃ / SiPh ₂ Me)	1.0	[C ⁺]-3 ^c (0.02)	CHCl₃	31%	0%
6	1b (SiMe ₃ / SiMe ₂ Ph)	1.0	[C ⁺]-1 (0.02)	CHCl₃	46%	0%
7	1c (SiMe ₃ / SiEt ₃)	1.0	[C ⁺]-1 (0.02)	CHCl₃	N.R	N.R.
8	1d (SiMe ₃ / SiMe ₂ t-Bu)	1.0	[C ⁺]-1 (0.02)	CHCl₃	N.R	N.R.
9	1e (SiEt ₃ / SiPh ₂ Me)	1.0	[C ⁺]-1 (0.02)	CHCl ₃	N.R	N.R.

^{*a*} Reaction conditions: **1a** (0.05 mmol), *p*-Br-C₆H₄CHO (0.05mmol) and Ph₃C⁺B(C₆F₅)₄⁻ (0.02 equiv). ^{*b*} The stereochemistry was assigned using optically pure compounds in Tables 2 and 3. The ratios were determined by ¹H NMR spectroscopy of the crude products. ^{*c*} [C⁺]-1: Ph₃C⁺B(C₆F₅)₄⁻; [C⁺]-2: Ph₃C⁺PF₆⁻; [C⁺]-3: Ph₃C⁺SCl₆⁻. ^{*d*} Isolated yields after purification by silica gel column chromatography.

Si ¹	OH (S) Me 4 steps 77% gram scale	Si ² Si ¹ Me RCHO EtO ₂ C (0.02 equiv) (S) 1a (97% ee) ^b CHCl ₃ , rt, 2 h	EtO ₂ C	Si ¹ Me (S) R OH $Q^{c} (dr \ge 95:5)^{d}$
Entry	R	Product		Yield ^e ee ^f
1	-С ₆ Н ₄ -Вг-р	EtO ₂ C OH	2a	75% 97%
2	-С ₆ Н ₄ -F-р	EtO ₂ C OH	2b	59% 95%
3	-C ₆ H ₄ -CI- <i>m</i>	EIO ₂ C OH	2c	70% 97%
4	-С ₆ Н ₄ -СN-р	EIO ₂ C OH	2d	90% 96%
5	-С ₆ Н ₄ -СF ₃ -р	EtO ₂ C OH	2e	70% 94%
6	-С ₆ Н ₄ -ОМе-р	EtO ₂ C OH	2f	N.R. N.D.
7	cO2Et	EtO ₂ C OH	2g	72% 96%
8	SiEt ₃	EtO ₂ C OH	2h	71% 87%
9	-Су	EtO ₂ C OH	2i	60% 93%
10	-CO ₂ Et	Si ¹ Me EtO ₂ C O ₂ Et	2j	60% 96%

^{*a*} Reaction conditions: (*S*)-**1a** (0.05 mmol), aldehdye (0.05 mmol) and $Ph_3C^+B(C_6F_5)_{a}^-$ (0.02 equiv) in CHCl₃ (0.5 mL) at room temperature for 2 h. ^{*b*} The (*S*)-configuration was determined by circular dichroism spectroscopy. ^{*c*} The *Z*-(*S*, *S*)-stereochemistry was assigned by *X*-ray analysis of the diol of **2a**.^{16 d} The ratios were determined by ¹H NMR spectroscopy of the crude products. ^{*c*} Isolated yields after purification by silica gel column chromatography.^{*f*} The ee values were determined by HPLC analysis using a chiral stationary phase.

occurred when using other analogous crotyl silanes **1c** (SiMe₃/SiEt₃), **1d** (SiMe₃/SiMe₂t-Bu) or **1e** (SiEt₃/SiPh₂Me).

Enantioselective synthesis of (*S*)-**1a** (97% ee)^{13, 14} was achieved on gram scale from optically pure (*S*)-**4**¹⁵ using the same procedure as that used for racemic **1a**. $Ph_3C^+B(C_6F_5)_4^-$ -catalyzed Sakurai allylation of (*S*)-**1a** was tested next with a range of aldehydes. The approach was suitable for electron-withdrawing group-substituted aryl

Journal Name

COMMUNICATION

aldehydes (Table 2). Chemoselective desilylation of SiPh₂Me was observed in all cases, leading to reliable chirality transfer from geminal bis(silyl) moiety to the products. **2a-2e** were obtained in good yield as a single *Z-anti*-isomer with (*S*, *S*)-enantioselectivity (entries 1-5). However, no reaction occurred with *p*-anisaldehyde containing an electron-donating MeO group (entry 6). Reaction of enal provided a higher ee (**2g**, 96% ee) than that (**2h**, 87% ee) obtained using less sterically demanding propargyl aldehyde (entries 7 and 8). While allylation of cyclohexyl aldehyde and ethyl glyoxylate gave **2i** and **2j**, respectively, in good yield with high ee, using unbranched alkyl aldehydes led to pyran as the major product (not shown).

Table 3 Scope of Prins Cyclization of 2a with Aldehdyes.^a

-	$\overset{\text{Si}^1}{\underset{(R)}{\overset{(S)}{S}{\overset{(S)}{\overset{S}{\overset{S}}{\overset{S}{S}}{\overset{S}{\overset{S}}{S}}{\overset{S}}{\overset{S}}{\overset{S}}{S$	R ² CHO Ph ₃ C ⁺ B(C ₆ F ₅) ₄ ⁻ (0.02 equiv)	Me R ¹	CO ₂ E	t
E	20 OH 2a	CH_2CI_2 , rt, 20 h ($R^1 = -C_6H_4$ -Br- p)	3 (dr	≥95:5) ^b	
Entry	R ²	Product		Yield ^c	ee ^d
1	-C ₂ H ₄ Br	Me CO ₂ Et R ¹ ^w O Br	3b	92%	94%
2	-C ₂ H ₄ Ph	Me CO ₂ Et R ¹ ^w O Ph	3c	70%	95%
3	<i>i-</i> Bu	R ¹ ^w O ^{··} / _i Bu	3d	98%	95%
4	-С ₆ Н ₄ -F-р	Me R ¹ ^(f) O CO ₂ Et	3e	90%	96%
5	-C ₆ H ₄ -OMe- <i>m</i>	Me R ¹ ⁽¹⁾ O ⁽¹⁾ OMe	9 3f	95%	95%
6	3-thienyl	R ¹ ^m O ⁿ , S	3g	98%	94%
7	siEt ₃	Me CO ₂ Et R ^{1,00} SiEt ₃	3h	90%	96%
8	cO2Et	Me CO ₂ Et CO ₂ Et	3i	80%	95%
9	S ² C ₆ H ₄ -NO ₂ -p	Me R ¹ ^w O	3j	90%	96%

should be also capable to catalyze the Prins cyclization¹⁷ of **2a** with aldehydes if using CH₂Cl₂ as solvent. As expected, the approach tolerated to alkyl, aryl, and α , β -unsaturated aldehydes (Table 3). Pyrans **3** were obtained as a single diastereomer in high yields and enantioselectivity. This clean Prins cyclization allowed us to realize a one-pot Sakurai allylation/Prins cyclization process (Scheme 3). Once the Sakurai allylation of (*S*)-**1a** with R¹CHO was complete and had formed **2a**, a solution of the second aldehyde R²CHO in CH₂Cl₂ was added to the same reaction tube. In this way, a range of pyrans **3k-3m** were generated in 50-65% yields with high *dr* and ee.

Scheme 3. One-pot Sakurai allylation/Prins cyclization to form 3k-3m.

Sakurai allylation of (S)-1a with aldehydes shows four different selectivities in a single transformation: chemoselective desilylation of SiMe₂Ph over SiMe₃, forming Z- over E-vinyl silane, anti over syndiastereoselectivity and S/S over R/S-enantioselectivity. We proposed a model in Scheme 5 to rationalize the above selectivity outcomes. The reactive conformation of (S)-1a should be that, in which the most sterically demanding SiPh₂Me group is positioned perpendicular to the alkene and the CH₂CO₂Et group adopts an exoorientation at the allylic position. This conformation would minimize the allylic strain, and also benefits from a hyperconjugation effect between the C–SiPh₂Me bond and alkene. Thus, chemoselective elimination of SiPh₂Me would generate SiMe₃-substituted Z-vinyl silane. Despite the real catalyst (C^{+} , Si⁺ or H^{+}) is not clear currently,¹⁸ the classical *anti*- S_{E}^{-1} mechanism¹⁹ could apply to each of them, giving a unified allylation model: antiperiplanar transition states 7-syn and 7-anti. 7-anti appears being more favorable than 7-syn, which suffers from a severe gauche interaction between R and SiMe₃ groups. Thus, reaction would proceed through 7-anti to generate Z-anti-(S, S)-2 diastereoand enantioselectively.

^{*a*} Reaction conditions: **2a** (0.05 mmol), aldehyde (0.05 mmol) and $Ph_3C^{+}B(C_6F_5)_{a}$ (0.02 equiv) in CHCl₃ (0.5 mL) at room temperature for 20 h. ^{*b*} The stereochemistry was determined based on NOE experiments of **3d**. The ratios were determined by ¹H NMR spectroscopy of the crude products. ^{*c*} Isolated yields after purification by silica gel column chromatography. ^{*d*} The ee values were determined by HPLC analysis using a chiral stationary phase.

NO2

Scheme 5. Model analysis to explain Z-anti-(S, S)-selectivity outcome.

Functionalization of the endo-cyclic olefin in 3 allowed us to

Formation of the by-product (\pm) -**3a** implies that $Ph_3C^*B(C_6F_5)_4$

COMMUNICATION

Scheme 6. Bromination of 3d to form fully substituted pyrans 8 and 9.

In summary, we have achieved an enantioselective synthesis of $SiMe_3/SiPh_2Me$ -substituted crotyl geminal bis(silane). This compound is a useful reagent for $Ph_3C^+B(C_6F_5)_4^-$ -catalyzed asymmetric Sakurai allylation and one-pot Sakurai allylation/Prins cyclization process. Chemoselective desilylation of SiPh₂Me leads to the efficient chirality transfer, giving *Z*-anti-(*S*, *S*)-selectivity. Applications of this methodology in organic synthesis are underway.

We are grateful for financial support from the NSFC (21622202, 21290180, 21502125). The authors thank Prof. Qin Ouyang in Third Military Medical University for his invaluable help in computational works. The authors also thank Mr. Zhendong Chen for his invaluable help in editing the supplementary materials.

Notes and references

Published on 22 February 2017. Downloaded by University of Newcastle on 22/02/2017 21:20:07

- (a) Y. Yamamoto, N. Asao, Chem. Rev., 1993, 93, 2207; (b) S. R. Chemler, W. R. Roush, Modern Carbonyl Chemistry; J. Otera, Ed.; WILEY-VCH: New York, 2000; Chapter 11, p 403. (c) I. Fleming, A. Barbero, D. Walter, Chem. Rev., 1997, 97, 2063; (d) E. Langkopf, D. Schinzer, Chem. Rev., 1995, 95, 1375. (e) D. G. Hall, H. Lachance, Allylboration of Carbonyl Compounds; Wiley: Hoboken, NJ, 2012. (f) I. Fleming, Allylsilanes, allylstannanes and related systems. In Comprehensive Organic Synthesis; B. M. Trost, I. Fleming, Eds.; Pergamon Press: Oxford, 1991; Vol. 6, pp 563-593.
- 2 (a) Y. Yamamoto, H. Yatagai, K. Maruyama, J. Am. Chem. Soc., 1981, 103, 3229; (b) D. J. S. Tsai, D. S. Matteson, Organometallics, 1983, 2, 236; (c) Y. Yamamoto, K. Maruyama, T. Komatsu, W. Ito, J. Org. Chem., 1986, 51, 886; (d) M. Shimizu, H. Kitagawa, T. Kurahashi, T. Hiyama, Angew. Chem. Int. Ed., 2001, 40, 4283; (e) L. Carosi, H. Lachance, D. G. Hall, Tetrahedron Lett., 2005, 46, 8981; (f) A. Jiménez-Aquino, E. F. Flegeau, U. Schneider, S. Kobayashi, Chem. Commun., 2011, 47, 9456; (g) M. Chen, W. R. Roush, Org. Lett., 2013, 15, 1662; (h) Z. Q. Zuo, J. Yang, Z. Huang, Angew. Chem. Int. Ed., 2016, 55, 10839.
- (a) M. Chen, W. R. Roush, J. Am. Chem. Soc., 2011, 133, 5744; (b) M. Chen, W. R. Roush, J. Am. Chem. Soc., 2012, 134, 3925; (c) M. Chen, W. R. Roush, J. Org. Chem., 2013, 78, 3.
- 4 (a) M. Lautens, A. H. Huboux, B. Chin, J. Downer, *Tetrahedron Lett.*, 1990, **131**, 5829; (b) M. Lautens, R. N. Ben, P. H. M. Delanghe, *Tetrahedron*, 1996, **52**, 7221.
- (a) H. Wetter, P. Scherer, W. B. Schweizer, *Helv. Chim. Acta.*, 1979,
 62, 1987; (b) H. Wetter, P. Scherer, *Helv. Chim. Acta.*, 1983, 66, 118.
- 6 M. Lautens, P. H. M. Delanghe, Angew. Chem. Int. Ed., 1994, 106, 2557.
- 7 (a) L. J. Li, X. C. Ye, Y. Wu, L. Gao, Z. L. Song, Z. P. Yin, Y. J. Xu, Org. Lett., 2013, 15, 1068. For the latest advance of geminal bis(silane),

see: For selected advances of geminal bis(silane) chemistry, see: (b) Q. Luo, C. Wang, Y. X. Li, K. B. Ouyang, L. Gu, M. Uchiyama, Z. F. Xi, *Chem. Sci.* 2011, **2**, 2271; (c) K. Groll, S. M. Manolikakes, X. M. du Jourdin, M. Jaric, A. Bredihhin,; K. Karaghiosoff, T. Carell, P. Knochel, *Angew. Chem. Int. Ed.* 2013, **52**, 6776; (d) H. Y. Cui, J. Y. Zhang, C. M. Cui, *Organometallics* 2013, **32**, 1; (e) X. F. Bai, W. H. Deng, Z. Xu, F. W. Li, Y. Deng, C. G. Xia, L. W. Xu, *Chem. Asian J.* 2014, **9**, 1108; (f) Z. X. Liu, H. C. Tan, T. R. Fu, Y. Xia, D. Qiu, Y. Zhang, J. B. Wang, *J. Am. Chem. Soc.* 2015, **137**, 128003; (g) Z. J. Liu, X. L. Lin, N. Yang, Z. S. Su, C. W. Hu, P. H. Xiao, Y. Y. He, Z. L. Song, *J. Am. Soc. Chem.* 2016, **138**, 1877-1883.

- For selected examples using stable carbocation as catalyst, see: (a) T. Mukaiyama, S. Kobayashi, S. -I. Shoda, *Chem. Lett.*, 1984, **13**, 907; (b) T. Mukaiyama, S. Kobayashi, M. Murakami, *Chem. Lett.*, 1985, **14**, 447; (c) S. Kobayashi, S. Matsui, T. Mukaiyama, *Chem. Lett.*, 1988, **17**, 1491; (d) M. Yanagisawa, T. Mukaiyama, *Chem. Lett.*, 2001, **30**, 224; (e) S. R. Roy, A. Nijamudheen, A. Pariyar, A. Ghosh, P. K. Vardhanapu, P. K. Mandal, A. Datta, S. K. Mandal, *ACS Catal.*, 2014, **4**, 4307; (f) J. Bah, J. Franzén, *Chem. Eur. J.*, 2014, **20**, 1066; (g) J. Bah, V. R. Naidu, J. Teske, J. Franzén, *Adv. Synth. Catal.*, 2015, **357**, 148; (h) V. R. Naidu, S. Ni, J. Franzén, *ChemCatChem* 2015, **7**, 1896; (i) J. Lv, Q. C. Zhang, X. R. Zhong, S. Z. Luo, *J. Am. Chem. Soc.*, 2015, **137**, 15576.
- For seminal work, see: (a) A. Hosomi, M. Endo, H. Sakurai, *Chem. Lett.*, 1976, 941. For selected reviews, see: (b) L. E. Overman, T. A. Blumenkopf, *Chem. Rev.*, 1986, **86**, 857; (c) A. Hosomi, *Acc. Chem. Res.*, 1988, **21**, 200; (d) I. Fleming, J. Dunogues, R. Smithers, *Org. React.*, 1989, **37**, 57.
- 10 (a) E. J. Corey, J. A. Katzenellenbogen, G. H. Posner, J. Am. Chem. Soc., 1967, 89, 4245; (b) S. E. Denmark, T. K. Jones, J. Org. Chem., 1982, 47, 4595. (c) D. K. Kee, A. W. Plato, Tetrahedron Lett., 1990, 31, 6137.
- 11 K. D. Kim, P. A. Wagtiotis, *Tetrahedron Lett.*, 1990, **131**, 6137.
- (a)A. M. M. Castro, Chem. Rev., 2004, **104**, 2939. (b) K. C. Majumdar, R. K. Nandi, Tetrahedron, 2013, **69**, 6921
- 13 The S-configuration of (S)-1a was assigned by comparing its circular dichroism spectroscopy with the computational results of both (S)-1a and (R)-1a. See Supporting Information for details.
- 14 Claisen rearrangement of mono-3-Z and -E-silyl allylic alcohols usually proceeds by a classical chair-like transition state. For a reference, see: J. S. Panek, T. D. Clark, J. Org. Chem., 1992, 57, 4323. According to Panek's work, the rearrangement of (S)-6a in our case by a chair-like transition state should give 1a with the R- rather than S-configuration. Thus, formation of (S)-1a implies that the reaction might proceed by a boat transition state. More detailed studies are underway on this interesting observation.
- (a) J. Ogawa, S. X. Xie, S. Shimizu, *Appl Microbiol Biotechnol.*, 1999, 51, 53; (b) S. E. Denmark, N. Werner, *J. Am. Chem. Soc.*, 2010, 132, 3612.
- 16 CCDC 1528458 [diol of **2a**] contains the supplementary crystallographic data for this paper. These data can be obtained free of charge from The Cambridge Crystallographic Data Centre via www.ccdc.cam.ac.uk/data_request/cif.
- 17 For examples of Prins cyclization of 3-Z-silyl allylic alcohols, see: (a) I.
 E. Markól, D. J. Bayston, *Tetrahedron*, 1994, **50**, 7141; (b) K. Meilert,
 M. A. Brimble, *Org. Lett.*, 2005, **7**, 3497; (c) Y. J. Lian, R. J. Hinkle J. *Org. Chem.*, 2006, **71**, 7071; (d) G. Fraboulet, V. Fargeas, M. Paris, J.P. Quintard, F. Zammaattio, *Tetrahedron*, 2009, **65**, 3953; (e) J. P. Li,
 H. J. Zheng, Y. P. Su, X. Xie, X. G. She, *Synlett.*, 2010, **15**, 2283; (f) D.
 Clarisse, F. Fache, *Tetrahedron Lett.*, 2014, **55**, 2221.
- 18 The mechanism of carbocation cation catalysis is currently controversial. For C⁺-mechanism, see: (a) S. Denmark, C.-T. Chen, *Tetrahedron Lett.*, 1994, **35**, 4327. For Si⁺-mechanism, see: (b) T. K. Hollis, B. Bosnich, J. Am. Chem. Soc., 1995, **117**, 4570; (c) C.-T. Chen, S.-D. Chao, K.-C. Yen, C.-H. Chen, I.-C. Chou, S.-W. Hon, J. Am. Chem. Soc., 1997, **119**, 11341. For H⁺-mechanism, see: (d) O. Riant, O. Samuel, H. B. Kagan, J. Am. Chem. Soc., 1993, **115**, 5835; (e) S. Taudien, O. Riant, H. Kagan, *Tetrahedron Lett.*, 1995, **36**, 3513.
- 19 C. E. Masse, J. S. Panek, Chem. Rev. 1995, 95, 1293.

Journal Name