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Synthesis of novel amino squaric acids via addition of dianion
enolates derived from N-Boc amino acid esters
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Abstract—Novel a-amino squaric acid analogs were synthesized by initial addition reaction of a dianion enolate generated from
N-Boc amino acid tert-butyl ester to squaric acid diisopropyl ester, and subsequent decarboxylation of the resulting carboxylic
acid moiety.
� 2004 Elsevier Ltd. All rights reserved.
The carboxyl group in a-amino acids is an important
functional group as a proton-donating or an amide
bond-forming group.1 It has been recognized that sul-
fonic acid,2 phosphonic acid,3 boronic acid,4 and tetr-
azole5 can serve as an important surrogate for the
carboxyl group of a-amino acids (Fig. 1). Many syn-
thetic studies and applications of these analogs focusing
on their metabolic stability, inhibitory effects to pro-
teases,6 and potency for catalytic antibodies7 have been
reported.

Sulfonic acid 3 and phosphonic acid 4 are tetrahedral
surrogates. Boric acids 5 and tetrazoles 6 are planar ana-
logs while they are weak acids and are unable to be em-
ployed for peptide coupling reactions. Phosphonate
analogs can be used for peptide coupling reaction via
selective protection and activation of the two hydroxy
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Figure 1.
groups. In this context, development of an amino acid
analog that possesses a planar conjugate system and
acidic functionality serving for peptide coupling reac-
tions is a challenging task in this area. In this paper,
we report the synthesis of novel amino acid analog
2 bearing a 2-hydroxy-3,4-dioxocyclobut-1-enyl (sq)
group known as a planar square acid surrogate via a
carbon–carbon bonds.8 Squaric acid belongs to a class
of oxocarbons and exhibits unique physicochemical
properties, for example, strong acidity, aromaticity,
strained ring, electron deficiency, and metal chelating
ability.9 The sq group has received considerable atten-
tion as a carboxylic acid mimic in medicinal chemistry,10

a novel chromophore in material science,11 a new chela-
tor in inorganic chemistry,12 and a starting material for
a synthon of quinones, triquinanes, cyclopentenones,
and furanones in organic synthesis.13 Recently, squaric
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Table 1. Deprotonation experiments of 7a

Entry Basea (pKa)
b d-Incorporationd

(%)

[a]D
e and

Racemization

ratiof (%)

1 LDA (35.7) 33 +7.36:76

2 LDAc 51 +1.58:95

3 LHMDS (29.5) <1 +30.2:<1

4 LTMP (37.3) 43 +5.96:81

a Conditions: 2.2equiv base, THF, �78�C, 1h.
b Ref. 18.
c 6equiv of LDA was used.
d Determined by 1H NMR.
e Values of a mixture of 7a and 13a.
f Based on the [a]D value.
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acid diesters are employed for a linker to develop bio-
conjugate molecules by means of a facile substitution
of a squaric acid diester with amines.14 These multifunc-
tional characteristics prompted us to develop novel
sq-amino acid analog 2.

We planned a simple access to 2 from readily available
N-Boc a-amino acid esters such as Phe, Ala, etc.
(Scheme 1). To this end, an addition of dianion enolate
815 derived from N-Boc a-amino acid esters 7 to squaric
acid diester 9 followed by decarboxylation reaction (11
to 12) was devised according to our previous synthesis
of sq-Gly (2: R = H) from a dianion enolate 8.16

Initially, we examined an addition reaction of 9 to a
dianion enolate 8a (R = Bn). Treatment of Boc-LL-Phe
tert-butyl ester 7a with 2.2equiv of LDA in THF
at �78 �C followed by addition of 9 gave the desired
adduct 10a in low yield (Scheme 2).

The above insufficient results led us to examine the mag-
nitude of the enolization by means of deuterium incor-
poration experiments (Scheme 3, Table 1). Treatment
of LL-7a with 2.2equiv of LDA at �78 �C followed by
quenching with CH3CO2D afforded a mixture of d-atom
incorporated 13a and undeuterated 7a in 89% yield
(13a:7a = 33:67, entry 1). Even the use of 6equiv of
LDA gave 51% incorporation ratio (entry 2), suggesting
that the enolizations by LDA were insufficient.17 How-
ever, we found that the optical rotation of a mixture
of 13a and 7a was extremely reduced indicating that
the starting LL-7a was racemized via the enolate 8a by
using LDA. A proposed reaction pathway to explain
these results is depicted in Scheme 3. Dianion enolate
8a would be basic enough to deprotonate the resulting
i-Pr2NH. Therefore, a proton exchanging equilibrium
would exist in situ prior to quenching with CH3CO2D.
Protonation of 14 and 8a afforded rac-Phe 7a and 13a,
respectively. The deprotonation efficiency was assessed
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with lithium 1,1,1,3,3,3-hexamethyldisilazide (LHMDS)
or lithium 2,2,6,6-tetramethylpiperidide (LTMP).
LHMDS was not effective at all due probably to its low-
er basicity in comparison with that of LDA (entry 3).18

The use of more basic and bulky LTMP gave slightly
better d-incorporation ratio (43%) accompanied by a
large loss of the optical rotation (entry 4).19

On the basis of the above results, we anticipated that the
use of sec-BuLi instead of amine bases would be advan-
tageous for the exclusive formation of the dienolate 8a
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(Scheme 4). As expected, the magnitude of d-incorpora-
tion ratio (90%) and loss of the optical rotation (93%)
were found to be nearly equal when 2.2equiv of sec-
BuLi was used. Thus, an effective method for generation
of a dianion enolate from easily available Boc-protected
amino acid esters using sec-BuLi was established.

With efficient method for the dianion enolate formation
in hand, we next examined its condensation with 9.
Treatment of 7a with sec-BuLi in THF at �78 �C fol-
lowed by addition of 9 gave the desired adduct 10a in
69% yield. Thus, it was found that the improved ratio
of the enolate formation directly reflected to an increase
in the product yield. The dianion enolate derived from
various amino acid tert-butyl esters 7b–h reacted
smoothly with 9 to give the corresponding adducts
10b–h in satisfactory yields (Table 2).

Conversion of 10a–h to the sq-amino acids 2a–h were
performed according to our previous method.16 Thus,
the adduct 10a was treated with a small amount of
concd HCl in CH2Cl2 to give cyclobutenedione 11a.
Exposure to concd HCl in acetone occurred simulta-
neous decarboxylation and removal of the protecting
groups to give sq-Phe 2a. Thus sq-Phe 2a was prepared
Table 2. Synthesis of sq-amino acids 2a–h
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2 equiv sec-BuLi, 
THF, –78 ˚C, 1h,

 then 1 equiv 9, 1h

few drops of concd HCl, 
CH2Cl2, rt, 12 h.

 concd HCl, 
acetone,
 rt, 12h

Series Yieldsa (%)

10a–h

Yieldsb (%)

11a–h

Yieldsc (%)

2a–h

a: Phe 69 78 72

b: Tyr 50d 77 74

c: Ala 75 75 65

d: Leu 52 79 46

e: Ile 43 85 50

f: Allylgly 70 75 80

g: Val 36 70 70

h: Pro 53 81 36

a Yields from 7a,b.
b Yields from 10a,b.
c Yields from 11a,b.
d 3.3equiv of sec-BuLi was used.
from 7a in three steps. The overall yield was 39%. Other
adducts 10b–h were converted in a similar manner as
those of 2a to the corresponding sq-amino acids 2b–h20

in good to moderate yields (Table 2).

In summary, we have developed a concise synthetic
route to access sq-amino acids by addition of dianion
enolates derived from easily available N-Boc a-amino
acid esters to squaric acid diester followed by the decar-
boxylation reaction. The key to the synthesis was effec-
tive generation of the dianion enolate based on the
elucidation of their equilibrium behavior. Further stud-
ies with respect to incorporation of the novel sq-amino
acids into bioactive peptides are in progress.
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