
ChemComm

Accepted Manuscript

This article can be cited before page numbers have been issued, to do this please use: L. A. Morton, M. Miao, T. Chen, T. M. Callaway, S. Chen, A. A. Tuinman, X. Yu, Z. Lu and Z. Xue, *Chem. Commun.*, 2013, DOI: 10.1039/C3CC46014B.

This is an *Accepted Manuscript*, which has been through the RSC Publishing peer review process and has been accepted for publication.

Accepted Manuscripts are published online shortly after acceptance, which is prior to technical editing, formatting and proof reading. This free service from RSC Publishing allows authors to make their results available to the community, in citable form, before publication of the edited article. This Accepted Manuscript will be replaced by the edited and formatted Advance Article as soon as this is available.

To cite this manuscript please use its permanent Digital Object Identifier (DOI®), which is identical for all formats of publication.

More information about *Accepted Manuscripts* can be found in the **Information for Authors**.

Please note that technical editing may introduce minor changes to the text and/or graphics contained in the manuscript submitted by the author(s) which may alter content, and that the standard **Terms & Conditions** and the **ethical guidelines** that apply to the journal are still applicable. In no event shall the RSC be held responsible for any errors or omissions in these *Accepted Manuscript* manuscripts or any consequences arising from the use of any information contained in them.

RSCPublishing

PSC Publishing

www.rsc.org/chemcomm Registered Charity Number 207890 Published on 19 August 2013. Downloaded by Florida International University on 19/08/2013 21:43:40

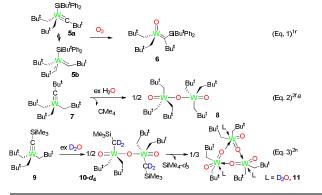
Cite this: DOI: 10.1039/c0xx00000x

www.rsc.org/xxxxx

Communication

Reactions of d^0 tungsten alkylidyne complexes with O₂ or H₂O. Formation of an oxo siloxy complex through unusual silyl migrations

Laurel A. Morton, Maozhong Miao, Tabitha M. Callaway, Tianniu Chen, Shu-Jian Chen, Albert A. Tuinman, Xianghua Yu, Zheng Lu, and Zi-Ling Xue*


5 Received (in XXX, XXX) Xth XXXXXXXX 20XX, Accepted Xth XXXXXXXX 20XX DOI: 10.1039/b000000x


 $(Me_3SiCH_2)_3(Me_3SiC=)W \leftarrow O=PMe_3$ (1), an adduct between (Me₃SiCH₂)₃W=CSiMe₃ (2) and O=PMe₃, reacts with O₂ to give O=W(OSiMe₃)(CH₂SiMe₃)₃ (3) and CO₂. Reaction of 2 10 with H₂O yields 3 and the trimer $[(\mu-O)W(CH_2SiMe_3)_2(=O) (THF)]_3$ (4). In the reaction of D₂O with 2, 3- d_n and methane isotopologues CH₂D₂, CHD₃ and CD₄ have been observed.

Early transition metal complexes are often sensitive to O₂ and $_{15}$ H₂O.^{1,2} Reactions of O₂ with d^0 complexes are often unique, leading to the oxidation of ligands.¹ In comparison, reactions of O_2 with d^n complexes usually involve the oxidation of metals. Earlier studies showed O insertion into the M-Si and M-C bonds of d^0 complexes in their reactions with O_2 .^{1c-k} The use of redox-20 active ligands in a Zr(IV) complex leads to the isolation of a bisperoxo complex.^{1a} We have found that the reaction of O₂ with d^0 silvl alkylidyne **5a** and its bis-alkylidene tautomer **5b** leads to the formation of the oxo alkylidene compound **6** (Eq. 1).^{1r} The nature of reactions between early transition metal complexes and 25 H₂O has also been of intense interest.² The reaction of water with

 d^0 (Bu^tCH₂)₃W=CBu^t (7) was found to give CMe₄ and $O[W(=O)(CH_2Bu^t)_3]_2$ (8, Eq. 2).^{2f} We found earlier that $(Bu^tCH₂)_3W \equiv CSiMe_3$ (9) reacted with D₂O, through a ratedetermination process, to give the oxo $10-d_4$ which then $_{\rm 30}$ selectively loses the CD_2SiMe_3 ligands, yielding the trimer 11(Eq. 3). Reactions of d^0 complexes with O_2^3 or H_2O^4 have been used recently to make metal oxides as microelectronic insulating materials, leading to significant drops in leakage currents in transistors. We have found that the reaction of O_2 with d^0 1 ³⁵ surprisingly yields the oxo siloxide **3** and CO₂ (Scheme 1). One SiMe₃ group in 1 undergoes an unusual migration to give the OSiMe₃ ligand in 3.^{5,6} Unexpectedly, 2^7 reacts with H₂O to yield

3 as well. CH_4 is generated in the reaction. Another product is

Scheme 1. Reactions of 2. SiMe₄ was observed by NMR.

the trimer 4, through O-H addition to the W=CSiMe₃ bond and elimination of SiMe₄. When 2 reacts with D₂O, analysis by highresolution mass spectrometry (HRMS) reveals the formation of the methane isotopologues CH₂D₂, CHD₃ and CD₄.

1 was prepared from 2 and O=PMe₃.⁸ The ¹³C NMR peak of 327.39 ppm for C=W in the 14e 1 is up-field shifted from 343.67 ppm in 12e 2. The W=C bond length of 1.763(7) Å in 1 (Fig. 1) is slightly longer than 1.739(8) Å in $(Bu^{t}CD_{2})_{3}W \equiv CSiMe_{3} (9-d_{6})$.

When 1 was exposed to O_2 , it was found to convert to ⁵⁰ O=W(OSiMe₃)(CH₂SiMe₃)₃ (**3**).⁸ A quantitative MS analysis of the gaseous products using 13 CO₂ revealed the formation of CO₂, and the molar ratio of $3 : CO_2$ is ca. 1.0 : 0.9 (Scheme 1).⁸ In comparison, when 2 was exposed to O_2 in the absence of $O=PMe_3$, it decomposed to unknown species. Addition of 2 to the 55 reaction mixture from $\mathbf{1}$ and O_2 and crystallization gave crystals of 12 as a 1:1 adduct between 3 and 2.8 The ²⁹Si NMR peak of OSiMe3 at 10.74 ppm is downfield shifted from those of C=W-CH₂SiMe₃ at -1.50 ppm, O=W-CH₂SiMe₃ at -2.97 ppm, and =CSiMe₃ at −19.76 ppm in 12.⁸ The X-ray structure of 12 reveals 60 a C_3 axis through the C=W \leftarrow O=W-O-Si bonds, giving thus a linear W(2)-O(2)-Si(4) linkage (Fig. 1). 3 and 2 are bonded through a W=O \rightarrow W dative bond [2.578(6) Å]. The W=C bond distance of 1.775(11) Å in 12 is longer than those in $9-d_6$ $[1.739(8) \text{ Å}]^9$ and **1** [1.763(7) Å], perhaps as a result of trans 65 influence by 2. The W=O bond distance of 1.735(6) Å in 12 is similar to those in other W oxo complexes.^{2f,5e,10}

The pathway in the formation of 3 from 1 is not clear. The alkylidyne carbon atom in 1 is the most electron-rich atom with a formal -4 charge. It is thus not surprising that the $W \equiv C$ bond in 1 70 is attacked by O2, an oxidant, yielding A in Scheme 2. Additional attack by O₂ and oxidation of the C atom give CO₂. The unusual silvl migration in **B** is perhaps driven by the oxophilicity of silicon.

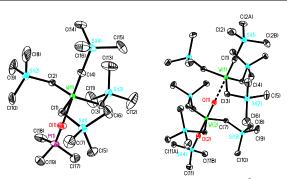
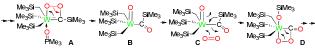



Fig. 1 Structures of 1 (Left) and 12 (Right). Bond lengths (Å) and angles (°): 1 C4-W1 1.763(7), O1-W1 2.307(7), C4-W1-O1 179.5(3), P1-O1-W1 178.5(5). 12 C1-W1 1.775(11), O1-W2 1.735(6), O2-W2 1.9246, O1→W1 2.578(6), O2-Si4 1.630(6), C1-W-C3 100.45(15), O1-W2-C7 5 92.33(14), O2-W2-C7 87.67(14).

Scheme 2. Part of the proposed pathway in the reaction of 1 with O_2 .

The alkyl alkylidyne **2** reacts with water, yielding CH₄, SiMe₄, ¹⁰ and two complexes (Scheme 1). One is trimer **4** which is similar to 11^{2n} in Eq. 3. The crystal structure of **4** is given in Fig. 2. It is surprising that O=W(OSiMe₃)(CH₂SiMe₃)₃ (**3**) was also isolated from the reaction (Scheme 1), indicating a SiMe₃ migration to a W=O ligand in the reaction. When the reaction was conducted at ¹⁵ 23 °C, the molar ratio of **3** : **4** is 0.7 : 1. The yield of **3** is higher at -25 °C or below. When **2** reacted with H₂O at -78 °C, the ratio was 29 : 1. When powders of **2** were added H₂O in THF at -25 °C, the yield of **3** was also higher with **3** : **4** = 13 : 1.

Published on 19 August 2013. Downloaded by Florida International University on 19/08/2013 21:43:40

30

35

MS analyses of the gaseous products using ¹³CH₄ as the ²⁰ calibration showed the formation of 0.62 equiv of CH₄ when **1** reacts with 2 equiv of H₂O.⁸ Since the yield of **3** is ca. 66%, the ratio of CH₄ and **3** in the reaction mixture is ca. 1:1. A mechanism consistent with the observations is given in Path II in Scheme 3. The =C- atom in **2** is basic. Addition of H₂O to the ²⁵ W=C bond in **2** leads to the formation of the hydroxyl alkylidene **E** and oxo **F**. The oxophilic SiMe₃ group in one of the CH₂SiMe₃ ligands in **F** then undergoes a migration to the oxo ligand in Path II, yielding the OSiMe₃ and a methylene ligand in **C**. Addition of a second H₂O molecule gives **3** and CH₄. **F** may also be attacked

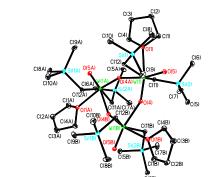
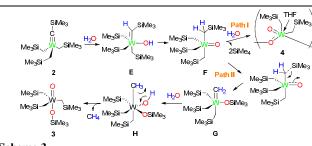
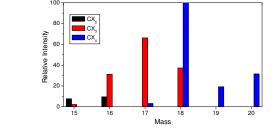
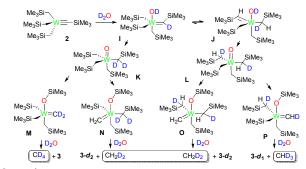



Fig. 2 Structure of 4. Bond lengths (Å) and angles (°): W1-C11 2.167(4), W1-C12 2.159(4), W1-O1 2.363(3), W1-O4 1.758(3), W1B-O4 2.239(3), W1-O4A 2.239(3), W1-O5 1.711(3), O4-W1-O4A 89.0(2), O5-W1-O1 45 86.3(1), W1-O4-W1A 150.9(1), W1-C12-Si1 118.3(2).



65


70

by H₂O through Path I, eliminating two molecules of SiMe₄ to give dioxo **4** containing two alkyl ligands. In other words, rates of ⁵⁰ two competing paths here lead to two different products. Perhaps in the reaction of **10-** d_4 with D₂O (Eq. 3), attack by D₂O is fast, removing the CD₂SiMe₃ ligands before they undergo a migration.

When **2** in THF- d_8 was added D₂O (99.9% D, ca. 5 equiv),^{8,11} we were surprised to find that an HRMS analysis of the methane ⁵⁵ isotopologues gave the following ratios of CH₄ : CH₃D : CH₂D₂ : CHD₃ : CD₄ = 0 : 3 : 100 : 19 : 32(± 5)% (Fig. 3). CH₂D₂ and CHD₃ were unexpectedly major products in the reaction. ²H NMR spectrum of the reaction of **2** with D₂O (Fig. S1) revealed the formation of SiMe₄- d_n and O=W(OSiMe₃)(CH_{2-n}D_nSiMe₃)₃ ⁶⁰ (**3**- d_n) containing partially deuterated ligands.⁸ It should be noted, although the glassware was pre-dried (0.01 torr, >400 °C),^{8,11} silanol groups apparently remained. They may exchange with D₂O, leading to a higher H/D ratio.⁸ Thus, the above ratios of the methane isotopologues are analysed qualitatively below.

Fig. 3 The HRMS for the methane isotopologues in the 15-20 Dalton ⁷⁵ region. Isotopologues of methylene (CX₂), methyl (CX₃) and methane. (CX₄) are given in black, red, and blue colours, respectively.⁸

The formation of CH_2D_2 and CHD_3 and observation of ⁸⁰ O=W(OSiMe₃)(CH_{2-n}D_nSiMe₃)₃ (**3-***d*_n) are consistent with exchanges of the α -H atoms between =CDSiMe₃ and -CH₂SiMe₃ in **I** in Scheme 4 to yield **J** containing a W=CH– bond, after the D–OD addition to the W=C– bond in **2**. Similar α -H migrations have been reported.^{9,12} In addition to the α -H exchange, the ⁸⁵ migration of the second D atom in W-OD to the W=CDSiMe₃ Published on 19 August 2013. Downloaded by Florida International University on 19/08/2013 21:43:40

65

ligand affords the tetraalkyl W oxo intermediate K. In J, subsequent D migration from W-OD to W=CH- yields L. The SiMe₃ group in *one* of these alkyl ligands in K and L undergoes the C-Si bond cleavage and SiMe₃ migration to the oxo ligand to

- ⁵ give **M/N** and **G/P**, respectively, containing a methylene ligand (W=CD₂- in **M**, W=CH₂- in **N/O**, or W=CHD- in **P**), which subsequently reacts with D₂O to yield the methane isotopologues. The presence of HOD in the D₂O-THF- d_8 may lead to the formation of 3(± 5)% CH₃D.^{9,11}
- It is interesting to note that the reactions of H₂O with $(Bu^{t}CH_{2})_{3}W \equiv CBu^{t}$ (7, an analog of 2, Eq. 2), and $(Bu^{t}CH_{2})_{2}Mo(=CHBu^{t})(=NBu^{t})$ give 8^{2f} and $[\{Mo(=NBu^{t})(CH_{2}Bu^{t})_{3}\}_{2}(MoO_{4})],^{2g}$ respectively. The alkylidene intermediate $(Bu^{t}CH_{2})_{3}W(=CDBu^{t})(OD)$ in the reaction of 7 with 1⁵ D₂O does not undergo α -H migration.^{2f} Reactions of H₂O/O₂ with d^{4} Cp*M(NO)(CH₂SiMe₃)₂ (M = Mo, W) afford Cp*M(=O)₂-(CH₂SiMe₃),^{2h} with no SiMe₃ migration to the oxo ligands.

The formation of the novel siloxide **3** demonstrates rich chemistry in the reactions of d^0 complexes with O_2 or H_2O . The ²⁰ reactions of **1** with O_2 and **2** with H_2O are of different nature: The former a redox reaction and the latter an acid-base reaction. Both, however, involve the alkylidyne carbon atoms and yield the same complex **3**. At the oxidation state of -4, the \equiv C- atoms in **1** and **2** are electron rich. Two molecules of O_2 , an oxidant, obtain a total ²⁵ of 8 electrons from the \equiv C atom in **1**, oxidizing it to CO_2 and yielding **3**. When **2** is exposed to H_2O , the \equiv C- atom in **2** acts as a base, abstracting a total of four H⁺ ions from two H_2O molecules, yielding **3** and converting itself to CH₄. Oxophilicity of silicon and tungsten plays a critical role here, obtaining oxygen atoms ³⁰ and driving the formation of CO₂ and CH₄ in the reactions.

We thank the US National Science Foundation (CHE-1012173) for financial support, Profs. George M. Sheldrick and Craig E. Barnes for help with the structure of **12**, and Michael Bleakley for assistance.

35 Notes and references

Department of Chemistry, University of Tennessee, Knoxville, Tennessee 37996, USA. Tel:+1-865-974-3443; E-mail: <u>xue@utk.edu</u>

† Electronic Supplementary Information (ESI) available: Experimental section, aditional HDMS analysis, and cif files of X-ray crystal structures.
 40 See DOI: 10.1039/b000000x/

- For reactions of O₂ with d⁰ complexes, see, e.g., (a) C. Stanciu, M. E. Jones, P. E. Fanwick and M. M. Abu-Omar, *J. Am. Chem. Soc.* 2007, **129**, 12400; (b) F. Lu, R. A. Zarkesh and A. F. Heyduk, *Eur. J. Inorg.*
- ⁴⁵ Chem. 2012, 467; (c) T. D. Tilley, Organometallics 1985, 4, 1452;
 (d) T. F. Blackburn, J. A. Labinger and J. Schwartz, Tetrahedron Lett. 1975, 16, 304; (e) T. V. Lubben and P. T. Wolczanski, J. Am. Chem. Soc. 1987, 109, 424; (f) V. C. Gibson, C. Redshaw, G. L. P. Walker, J. A. K. Howard, V. J. Hoy, J. M. Cole, L. G. Kuzmina and D. S. De
- 50 Silva, J. Chem. Soc., Dalton Trans. 1999, 161; (g) R. Wang, K. Folting, J. C. Huffman, L. R. Chamberlain and I. P. Rothwell, *Inorg. Chim. Acta* 1986, **120**, 81; (h) X. Liu and D. Cui, *Dalton Trans*. 2008, 3747; (i) W. M. Vetter and A. Sen, *Organometallics* 1991, **10**, 244; (j) A. Van Asselt, M. S. Trimmer, L. M. Henling and J. E.
- Bercaw, J. Am. Chem. Soc. 1988, **110**, 8254; (k) B. J. Boro, R. Lansing, K. I. Goldberg and R. A. Kemp, *Inorg. Chem. Comm.* 2011, **14**, 531; (l) M. H. Chisholm, C. E. Hammond and J. C. Huffman, J. Chem. Soc., Chem. Comm. 1987, 1423; (m) R. Wang, X. Zhang, S. Chen, X. Yu, C. Wang, D. B. Beach, Y. Wu and Z. Xue, J.
- 60 Am. Chem. Soc. 2005, **127**, 5204; (n) S. Chen, X. Zhang, X. Yu, H. Qiu, G. P. A. Yap, I. A. Guzei, Z. Lin, Y. Wu and Z. Xue, J. Am. Chem. Soc. 2007, **129**, 14408; (o) S.-J. Chen, X.-H. Zhang, Z. Lin, Y.-D. Wu and Z.-L. Xue, Sci. China Chem. 2009, **52**, 1723; (p) S.-

J. Chen, G. P. A. Yap, Z.-L. Xue, *Sci. China Chem.* 2009, **52**, 1583;
(q) S. Chen, J. Zhang, X. Yu, X. Bu, X. Chen and Z. Xue, *Inorg. Chem.* 2010, **49**, 4017; (r) T.-N. Chen, X.-H. Zhang, C.-S. Wang, S.-J. Chen, Z.-Z. Wu, L.-T. Li, K. R. Sorasaenee, J. B. Diminnie, H.-J. Pan, I. A. Guzei, A. L. Rheingold, Y.-D. Wu and Z.-L. Xue, *Organometallics* 2005, **24**, 1214; (s) H. Qiu, S.-J. Chen, C.-S. Wang,

- Y.-D. Wu, I. A. Guzei, X.-T. Chen and Z.-L. Xue, *Inorg. Chem.* 2009, **48**, 3073; (t) X. Yu, X.-T. Chen and Z.-L. Xue, *Organometallics* 2009, **28**, 6642; (u) S.-J. Chen and Z.-L. Xue, *Organometallics* 2010, **29**, 5579; (v) Z. Wu, H. Cai, X.-H. Yu, J. R. Blanton, J. B. Diminnie, H.-J. Pan and Z.-L. Xue, *Organometallics* 2002, **21**, 3973.
- For reactions of H₂O with d⁰ complexes or their moisture sensitivity, see, e.g., (a) D. J. Darensbourg, in *Aqueous-Phase Organometallic Catalysis*, B. Cornils, W. A. Herrmann eds, 2nd ed: Wiley-VCH, 2004; (b) H. W. Roesky, I. Haiduc and N. S. Hosmane, *Chem. Rev.*
- 2003, 103, 2579; (c) G. L. Hillhouse and J. E. Bercaw, *J. Am. Chem. Soc.* 1984, 106, 5472; (d) G. Erker, C. Sarter, S. Werner and C. Krüger, *J. Organomet. Chem.* 1989, 377, C55; (e) A. van Asselt, B. J. Burger, V. C. Gibson and J. E. Bercaw, *J. Am. Chem. Soc.* 1986, 108, 5347; (f) I. Feinstein-Jaffe, D. Gibson, S. J. Lippard, R. R. Schrock and A. Spool, *J. Am. Chem. Soc.* 1984, 106, 6305; (g) G. Schoettel, J. Kress, J. Fischer and J. A. Osborn, *J. Chem. Soc. Chem. Comm.* 1988, 914; (h) P. Legzdins, E. C. Phillips, S. J. Rettig, L. Sanchez, J. Trotter and V. C. Yee, *Organometallics* 1988, 7, 1877; (i) A. S. Gamble and
- J. M. Boncella, Organometallics 1993, 12, 2814; (j) O. I. Guzyr, J.
 Prust, H. W. Roesky, C. Lehmann, M. Teichert and F. Cimpoesu, Organometallics 2000, 19, 1549; (k) M. Yoon and D. R. Tyler, Chem. Comm. 1997, 639; (l) S.-J. Chen, J. K. C. Abbott, C. A. Steren and Z.-L. Xue, J. Clust. Sci. 2010, 21, 325; (m) S.-J. Chen, H. Cai and Z.-L. Xue, Organometallics 2009, 28, 167; (n) B. A. Dougan and
- 5 Z.-L. Xue, *Sci. China Chem.* 2011, **54**, 1903; (o) U. Rosenthal, A. Ohff, M. Michalik, H. Goerls, V. V. Burlakov and V. B. Shur, *Organometallics* 1993, **12**, 5016.
- See, e.g., (a) J.-S. Lehn, S. Javed and D. M. Hoffman, *Chem. Vap. Deposition* 2006, **12**, 280; (b) M. K. Wiedmann, M. J. Heeg and C. H. Winter, *Inorg. Chem.* 2009, **48**, 5382; (c) J. B. Woods, D. B. Beach, C. L. Nygren and Z.-L. Xue, *Chem. Vap. Deposition* 2005, **11**, 289.
- See, e.g., (a) B. S. Lim, A. Rahtu and R. G. Gordon, *Nature Mater*. 2003, 2, 749; (b) S. Consiglio, R. D. Clark, G. Nakamura, C. S. Wajda and G. J. Leusink, *J. Vacuum Sci. Technol.*, A 2012, 30, 01A119/1.
- (a) R. R. Schrock, *Chem. Comm.* 2005, 2773; (b) R. R. Schrock, *Chem. Rev.* 2002, **102**, 145; (c) R. H. Grubbs, *Tetrahedron* 2004, **60**, 7117; (d) D. J. Mindiola, *Acc. Chem Res.* 2006, **39**, 813; (e) W. A. Nugent and J. M. Mayer, *Metal-Ligand Multiple Bonds*, Wiley: New York, 1988; (f) Z.-L. Xue and L. A. Morton, *J. Organomet. Chem.* 2011, **696**, 3924.
- 6. (a) F. Preuss, E. Fushslocher and W. Z. Towae, *Naturforsch. B* 1984, 39B, 61; (b) C. P. Gerlach and J. Arnold, *Inorg. Chem.* 1996, 35, 5770; (c) O. V. Ozerov, H. F. Gerard, L. A. Watson, J. C. Huffman and K. G. Caulton, *Inorg. Chem.* 2002, 41, 5615.
 - 7. R. A. Andersen, M. H. Chisholm, J. F. Gibson, W. W. Reichert, I. P. Rothwell and G. Wilkinson, *Inorg. Chem.* 1981, **20**, 3934.
 - 8. See Supplementary Information for details.
- 9. K. G. Caulton, M. H. Chisholm, W. E. Streib and Z. Xue, J. Am. 120 Chem. Soc. 1991, **113**, 6082.
 - (a) S. G. Feng, L. Luan, P. White, M. S. Brookhart, J. L. Templeton and C. G. Young, *Inorg. Chem.* 1991, **30**, 2582; (b) L. L. Blosch, K. Abboud, and J. M. Boncella, *J. Am. Chem. Soc.* 1991, **113**, 7066.
- 11. L. T. Zhuravlev, Colloid Surface A. 2000, **173**, 1.
- 125 12. (a) A. M. LaPointe, R. R. Schrock and W. M. Davis, J. Am. Chem. Soc. 1995, 117, 4802; (b) L. A. Morton, X.-H. Zhang, R. Wang, Z. Lin, Y.-D. Wu and Z.-L. Xue, J. Am. Chem. Soc. 2004, 33, 10208; (c) L. A. Morton, R.-T. Wang, X.-H. Yu, C. F. Campana, I. A. Guzei, G. P. A. Yap and Z.-L. Xue, Organometallics 2006, 25, 427; (d) Z.-L. Xue, S.-H. Chuang, K. G. Caulton and M. H. Chisholm, Chem.
- ⁰ Xue, S.-H. Chuang, K. G. Caulton and M. H. Chisholm, *Chem. Mater.* 1998, **10**, 2365; (e) S.-H. Choi, Z. Lin and Z. Xue, *Organometallics* 1999, **18**, 5488; (f) Z. Xue, K. G. Caulton and M. H. Chisholm, *Chem. Mater.* 1991, **3**, 384.