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Two chiral 2-azidoimidazolinium salts [(7aS)-3-azido-5,6,7,7a-tetrahydro-2-[(1R)-1-phenylethyl]-1H-
pyrrolo[1,2-c]imidazolium hexafluorophosphate (2) and 2-azido-1,3-bis[(S)-1-phenylethyl]imidazolin-
ium hexafluorophosphate (3)] were synthesized, and their structures were determined by X-ray single
crystal structural analysis. Migratory amidation reaction of enol silyl ether with 3 proceeded, but good
diastereoselectivity was not observed in the reaction.

� 2016 Published by Elsevier Ltd.
We have recently developed various synthetic methods using
2-azido-1,3-dimethylimidazolinium salts with nucleophilic com-
pounds. For example, 2-azido-1,3-dimethylimidazolinium chloride
(ADMC 1a) and its corresponding hexafluorophosphate (ADMP 1b)
were observed to be efficient diazo-transfer reagents (Fig. 1).1

ADMC 1a was prepared by the reaction of 2-chloro-1,3-
dimethylimidazolinium chloride (DMC) and sodium azide. ADMP
1b was isolated as a thermally stable crystal with a low explosibil-
ity.2b ADMC 1a and ADMP 1b reacted with 1,3-dicarbonyl
compounds under mild basic conditions to give 2-diazo-1,3-
dicarbonyl compounds in high yields; these products were easily
isolated because the reaction byproducts are highly soluble in
water.2 Naphthols reacted with ADMC 1a in the presence of Et3N
to give the corresponding diazonaphthoquinones in good to high
yields.3 Furthermore, ADMP 1b shows efficient diazo-transfer abil-
ity to primary amines even without the aid of a metal catalyst such
as Cu(II).4 2-Azidoimidazolinium salts 1 also show azide-transfer
ability to oxygen nucleophiles.5 In addition, migratory amidation
proceeded when ADMP 1b was treated with a benzyl aryl ketone
or enol silyl ether of an aryl ketone, giving a-aryl amide
(Scheme 1).6 These reactions were initiated by the attack of a
nucleophile at an azide moiety in 1. We hypothesized that if an
efficient asymmetric environment could be constructed around
the azide group in the 2-azidoimidazolinium salt, the salt would
be a new asymmetric reagent for the introduction of a nitrogen
functional group. However, the synthesis of optically active chiral
2-azido-1,3-dialkylimidazolinium salts has not been previously
reported. Recently, Ishikawa developed efficient chiral cyclic
guanidine possessing an imidazoline structure.7,8 Inspired by the
results, we examined the synthesis of chiral 2-azido-1,3-dialkylim-
idazolinium salts and successfully prepared (7aS)-3-azido-5,6,7,7a-
tetrahydro-2-[(1R)-1-phenylethyl]-1H-pyrrolo[1,2-c]imidazolium
hexafluorophosphate (2) and 2-azido-1,3-bis[(S)-1-phenylethyl]
imidazolinium hexafluorophosphate (3) (Fig. 1). Although a fine
X-ray structure of 2-azido-1,3-dialkylimidazolinium salt has not
been reported,9 we determined the unambiguous structures of 2
and 3 by single-crystal X-ray diffraction, with good R factors. In this
Letter, we report the synthesis, structure, and reaction of optically
active chiral 2-azido-1,3-dialkylimidazolinium salts 2 and 3 in
detail.
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Scheme 1. Migratory amidation with ADMP 1b.

Scheme 2. Synthesis of chiral bicyclic 2-azido-1,3-dialkylimidazolinium salt 2. (a)
DCC (1.1 equiv), DMAP (1.1 equiv), CH2Cl2, rt, 26 h (93%); (b) 3 M HCl aq., MeOH,
50 �C, 8 h (83%); (c) LiAlH4 (4.5 equiv), THF, 60 �C, 7 h; (d) thiocarbonyl imidazole
(1.1 equiv), o-dichlorobenzene, reflux, 6 h (2 steps, 62%); (e) (COCl)2 (1.4 equiv),
toluene, 70 �C, 5 h; (f) KPF6 (1.3 equiv), CH3CN, rt, 0.5 h (2 steps, 75%); (g) NaN3

(2.0 equiv), CH3CN, 0 �C, 1 h (52%).

Figure 2. ORTEP of 2. Thermal ellipsoids set at 50%. Crystal data of 2: C14H18F6N5P,
M = 401.29, orthorhombic, a = 8.457 (2), b = 10.074 (3), c = 20.740 (6) Å, V = 1766.9
(8) Å3, T = 123 K, space group P212121, Z = 4, 19,639 reflections measured, 3201
unique (Rint = 0.045), which were used in all calculations. R[F2 > 2r(F2)] = 0.045, wR
(F2) = 0.115.

Figure 3. ORTEP of 3. Thermal ellipsoids set at 50%. Crystal data of 3: C19H22F6N5P,
M = 465.38, monoclinic, a = 6.961 (3), b = 21.148 (7), c = 14.194 (6) Å, V = 2087.4
(13) Å3, T = 123 K, space group P21, Z = 4, 26,019 reflections measured, 7397 unique
(Rint = 0.060), which were used in all calculations. R[F2 > 2r(F2)] = 0.054, wR(F2)
= 0.107.
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Bicyclic 2-azido-1,3-dialkylimidazolinium salt 2 was synthe-
sized as shown in Scheme 2. First, bicyclic thiourea 8 was synthe-
sized from N-Boc-L-proline 5 and (R)-1-phenylethylamine (6) in
four steps using a procedure similar to that of Ishikawa
(Scheme 2).8b Thiourea 810 was converted into chloroimidazolin-
ium chloride 9 by treatment with oxalyl chloride, and 9was subse-
quently transformed to azidoimidazolinium salt 2 by anion
exchange with KPF6 and successive azide introduction with sodium
azide.11

Moreover, C2-symmetric azidoimidazolinium salt 3was synthe-
sized via known chloroimidazolinium chloride 128b prepared from
(S)-1-phenylethylamine (6) and oxalaldehyde 11 (Scheme 3).12

Single crystals of 2 and 3 were obtained by recrystallization
from a mixed solvent of hexane and ethyl acetate, and we success-
fully determined their X-ray structures (Figs. 2 and 3, Table 1).13

In Table 2, bond lengths and bond angles of azide moieties in
several azides are shown as a reference.14 The N(1)–N(2) and
Scheme 3. Synthesis of C2-symmetric chiral 2-azido-1,3-dialkylimidazolinium salt
3. (a) Cat. AcOH, CH2Cl2, rt, 24 h (76%); (b) NaBH4 (5.0 equiv), MeOH, rt, 27 h (88%);
(c) CSCl2 (1.5 equiv), Et3N (2.0 equiv), CH2Cl2, rt, 5 h (47%); (d) (COCl)2 (1.8 equiv),
toluene, 70 �C, 26 h (92%); (e) KPF6 (1.8 equiv), CH3CN, rt, 1 h (97%); (f) NaN3

(1.7 equiv), CH3CN, 0 �C, 1 h (84%).
N(2)–N(3) bond lengths of sulfonylazides are 1.24–1.28 Å,
1.11–1.13 Å, respectively (Runs 1–5). The difference between N
(1)–N(2) and N(2)–N(3) bond lengths is 0.12–0.17 Å. In contrast,
the difference between N(1)–N(2) and N(2)–N(3) bond lengths of
alkyl azides is smaller (0.05–0.08 Å) than those of sulfonylazides.

Compound 2 crystallized in the orthorhombic space group
P212121.13 The azide group of 2 is bent, with an N(1)–N(2)–N(3)
angle of 171.7(3)�. The N(1)–N(2) and N(2)–N(3) bond lengths of
2 are 1.267(3) and 1.116(4) Å, respectively, and the difference of
between N(1)–N(2) and N(2)–N(3) bond lengths was 0.15 Å. These
data are more similar to those of sulfonyl azides than to those of
alkyl azides. The dihedral N(2)–N(1)–C(1)–N(4) angle is 19.9(4)�,
indicating that the azide group is less twisted with reference to
the imidazoline ring plane (<30�) than that of ADMP, in which
the corresponding dihedral angle is �39.85� (computational
calculation; B3LYP/6-31G⁄⁄).4b The chiral 1-phenylethyl group
(–CH(CH3)Ph) in 2 is opposite to the azide group, and the



Table 1
Selected geometric parameters for 2 and 3 (distances in Å, angles in degrees)

2 3-A 3-B

N(1)–N(2) 1.267(3) N(1)–N(2) 1,265(5) N(6)–N(7) 1.248(5)
N(2)–N(3) 1.116(4) N(2)–N(3) 1.121(5) N(7)–N(8) 1.116(5)
C(1)–N(1) 1.372(4) C(1)–N(1) 1.385(5) C(20)–N(6) 1.369(5)
C(1)–N(4) 1.327(4) C(1)–N(4) 1.317(5) C(20)–N(9) 1.325(5)
C(1)–N(5) 1.319(4) C(1)–N(5) 1.328(5) C(20)–N(10) 1.322(5)
N(1)–N(2)–N(3) 171.7(3) N(1)–N(2)–N(3) 168.6(4) N(6)–N(7)–N(8) 168.9(4)
N(2)–N(1)–C(1)–N(4) 19.9(4) N(2)–N(1)–C(1)–N(4) 14.0(6) N(7)–N(6)–C(20)–N(9) �4.6(6)
N(2)–N(1)–C(1)–N(5) �160.7(2) N(2)–N(1)–C(1)–N(5) �167.0(3) N(7)–N(6)–C(20)–N(10) 177.4(3)
C(1)–N(5)–C(7)–C(9) 95.6(3) C(1)–N(5)–C(12)–C(14) �128.7(4) C(20)–N(10)–C(31)–C(33) �148.3(3)

C(1)–N(4)–C(4)–C(6) �85.7(4) C(20)–N(9)–C(23)–C(25) �85.0

Table 2
Bond lengths of azide moieties in several azides, as determined by X-ray analysis and
computational methods (distances in Å, angles in degrees)

Run Azide Methoda N(1)–N(2) N(2)–N(3) N(1)–N(2)–N(3)

1 14b X-ray 1.244(3) 1.125(3) 173.8(2)
2 14b X-ray 1.251(3) 1.129(3) 173.5(3)
3 15c X-ray 1.2781(16) 1.1103(16) 172.43(13)
4 16d X-ray 1.273(3) 1.121(3) 174.2(3)
5 17e X-ray 1.258(3) 1.116(4) 173.0(3)
6 17e X-ray 1.178(3) 1.133(3) 172.8(3)
7 18f Calc 1.237 1.156 172.7
8 1bg,h Calc 1.251 1.129 168.86

a X-ray: X-ray single crystal structure. Calc: computational calculation.
b Data are quoted from Ref. 14b Two crystallographically independent molecules

are observed in the unit, as shown in Runs 1 and 2.
c The data are quoted from Ref. 14f.
d The data are quoted from Ref. 14c.
e The data are quoted from Ref. 14d Data for the sulfonyl azide component of 14

and the alkyl azide component of 14 are shown in Run 5 and Run 6, respectively.
f Optimized by calculation (MP2/6-311G). The data are quoted from Ref. 15.
g Optimized by calculation (B3LYP/6-31G⁄⁄). The data are quoted from Ref. 4b.
h Dihedral angles N(4)–C–N(1)–N(2) and N(5)–C–N(1)–N(2) are �39.85� and

149.60�, respectively.

Scheme 4. Reaction of enol silyl ether 4 with chiral azidoimidazolinium salts 2 and
3.
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C(7)–C(9) bond between the phenyl group and chiral center C(7)
places almost perpendicular to the imidazoline ring plane (95.6
(3)� for the dihedral C(1)–N(5)–C(7)–C(9) angle). The bond length
of C(1)–N(1) (1.372(4) Å) is the longest among the C–N
bond connected to C(1) (1.327(4) Å for C(1)–N(4), 1.319(4) Å for
C(1)–N(5)). These data suggest that the structure of 2 is similar
to azidoimidazolinium I (Ia and Ib), not to guanidinodiazonium II
(Fig. 4).

Compound 3 crystallized in the monoclinic space group P21,
with two crystallographically independent molecules 3-A and 3-
B in the unit.13 The bending angles of N(1)–N(2)–N(3) and
N(6)–N(7)–N(8) are 168.6(4)� and 168.9(4)�, respectively, which
are slightly smaller than that of 2 and those of various sulfonyl
azides. The difference in the bond lengths between two kinds of
N–N bonds in the azide group (N(terminal)–N(center) and N(cen-
ter)–N(inside)) are similar to that of 2 and the azide group in sul-
fonyl azides (1.265(5) Å for N(1)–N(2), 1.121(5) Å for N(2)–N(3),
1.248(5) Å for N(6)–N(7), and 1.116(5) Å for N(7)–N(8)). The dihe-
dral angles for N(2)–N(1)–C(1)–N(4) and N(7)–N(6)–C(20)–N(9)
are 14.0(6)�, and �4.6(6)�, respectively, and the azide groups are
Figure 4. Resonance structure of 2-azido-1,3-dialkylimidazolinium salt.
located nearly in the imidazoline ring plane. With respect to the
conformation of chiral 1-phenylethylgroups (–CH(CH3)Ph) in 3,
the most bulky phenyl groups are located almost perpendicular
to the imidazoline ring, and the next-bulkiest groups (i.e., methyl
groups) are located opposite to the azide group. The smallest
groups (i.e., hydrogens) are located near the azide group. The ten-
dencies of the lengths of the C–N bonds connecting the azide and
imidazoline ring (C(1)–N(1) 1.385(5) Å and C(20)–N(6) 1.369
(5) Å) and the C–N bonds in the imidazoline ring (C(1)–N(4)
1.317(5) Å, C(1)–N(5) 1.328(5) Å, C(20)–N(9) 1.325(5) Å, and
C(20)–N(10) 1.322(5) Å) are similar to the corresponding tenden-
cies observed in 2, which suggests that the structure of 3 is not like
the guanidinodiazonium resonance form II but is rather like the
azidoimidazolinium resonance form I in the solid state.

To examine the efficiency of 2 and 3 as chiral reagents, we
attempted migratory amidation reactions with enol silyl ether 4.
In the reaction of bicyclic 2, the desired migratory amidation pro-
duct 19 was not obtained; the formation of bicyclic formation urea
20 was observed after quenching with water (Scheme 4). The reac-
tion of C2-symmetric 3 and 4 proceeded to give desired product 21
in 78% yield, which was converted to a-aryl amide 22 in 92% yield.
However, diastereoselectivity was not observed in the reaction of 3
and 4 (ca. 1:1 by 1H NMR) and the enantiomer ratio of 22 was
54:46, as determined by chiral HPLC analysis.16 As previously men-
tioned, the X-ray analysis of 3 shows that the smallest substituent,
hydrogen, on the chiral center is placed near the azide group in the
solid state, which suggests that the asymmetric environment
around the azide group in 3 is not well constructed, which would
explain why the reaction of 3 and 4 afforded low
diastereoselectivity.

In conclusion, we synthesized the chiral 2-azidoimidazolinium
salts 2 and 3 and characterized their structure by X-ray single-
crystal structural analysis. The X-ray analysis results suggested
that the structures of 2 and 3 are not like the resonance form of
guanidinodiazonium but rather like azidoimidazolinium resonance
form in the solid state. We are continuing to develop a new chiral
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azidoimidazolinium salt with a shielded azide group for the enan-
tioselective introduction of nitrogen functional groups.
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HRMS (FAB+) Found; m/z, 313.1461. Calcd for C19H22

35ClN2: (M�PF6)+ 313.1472;
mp 210–214 �C; [a]D23 �13.6 (c 0.987, acetone). To a solution of 13 (1.10 g,
2.41 mmol) in MeCN (12 mL), sodium azide (236 mg, 3.63 mmol) was added at
0 �C under argon. After stirring the mixture for 1 h, the mixture was passed
through Celite pad. The filtrate was concentrated in vacuo to afford crude
compounds, which were purified by recrystallization (hexane/EtOAc) to give 3
(809 mg, 2.02 mmol) in 84% yield. Spectral data for 3: 1H NMR (500 MHz,
CDCl3) d 7.47–7.43 (m, 4H), 7.40–7.35 (m, 6H), 5.25 (q, 2H, J = 5.4 Hz), 3.86–
3.81 (m, 2H), 3.62–3.58 (m, 2H), 1.70 (d, 6H, J = 7.0 Hz); 13C NMR (125.7 MHz,
CDCl3) d 153.7, 137.0, 129.5, 129.2, 126.6, 55.5, 43.2, 18.0; IR (KBr) d 2906,
2345, 2166, 1538, 835, 556 cm�1; Anal. Calcd for C19H22F6N5P: C, 49.04; H,
4.76; N, 15.05. Found: C, 49.11; H; 4.72, N; 14.95; HRMS (FAB+) Found; m/z,
320.1867. Calcd for C19H22N5: (M�PF6)+ 320.1875; mp 171–173 �C; [a]D23

�7.44 (c 1.07, acetone), yellow crystal.
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crystallographic data for 2. CCDC 1416639 contains the supplementary
crystallographic data for 3.
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