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Abstract—The one-pot radical fragmentation—phosphorylation reaction of a-amino acids and B-amino alcohols affords a-amino
phosphonates in good yields. The reaction was applied to the synthesis of potentially bioactive phosphonates.
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The a-amino phosphonates are amino acid analogues,
which have elicited considerable attention due to their
interesting biological properties.! For instance, the leu-
cine surrogate 1 (Fig. 1) is a potent inhibitor of leucine
aminopeptidase.? The proline analogue 2 is an angioten-
sin inhibitor, useful as an antihypertensive agent.> The
amino phosphonate 3 possesses herbicidal activity.*
Other amino phosphonates are promising antitumoural,
fungicidal, antibacterial and antiviral agents."* As a
result, different synthetic methodologies to obtain these
compounds have been developed.!

We report now on a mild and efficient preparation of
these compounds from B-amino alcohols and a-amino
acid derivatives, using a sequential fragmentation—phos-
phorylation reaction (Scheme 1).

It is known that on treatment with PhI(OAc),-I,, the
B-amino alcohol derivatives 4a (X = H,H) generate an
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Figure 1. Bioactive a-amino phosphonates.
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Scheme 1. Proposed one-pot radical fragmentation—phosphorylation
for the synthesis of a-amino phosphonates.

alkoxyl radical 5a, while the amino acids 4b (X = 0)
generate a carboxyl radical 5b.> These O-radicals were
expected to undergo a radical B-fragmentation to afford
a C-radical 6,%° which would be oxidized in the reaction
medium to an N-acyliminium ion 7.° This intermediate
could be trapped by phosphorous nucleophiles, namely
dimethyl phosphonate or trialkylphosphites, to afford
o-amino phosphonates 8.

To explore the feasibility and scope of this reaction, sev-
eral amino alcohol and amino acid derivatives 915 were
prepared in a few steps from commercial products, using
standard methodologies.
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Table 1. One-pot B-fragmentation—phosphorylation reaction®

Entry Substrate Conditions® Products (%)°
1 9 A 16 (64)

2 9 B 16 (62)

3 9 C 16 (26), 17 (27)
4 9 D 16 (4), 17 (64)
5 10 D 17 (86)

6 11 D 18 (81)

7 12 D 19 (85)

8 13 D 20 (67)

9 14 D 21b (89)

10 15 D 22 (26)

# General procedure: The substrate (1 mmol) in dry dichloromethane
(15 ml) was treated with DIB (2.5 mmol) and iodine (1 mmol) and
irradiated with visible light (sunlight, or a 100 W tungsten-filament
lamp). The reaction mixture was stirred at room temperature under
nitrogen until no starting material was observed by TLC analysis
(about 3 h). Then it was cooled to 0 °C and the Lewis acid (BF3-OEt,
or TMSOTf, 2equiv) and the nucleophile [HP(O)(OMe), or
P(OMe)s;, 5 equiv] were added. The reaction was allowed to reach rt
and stirred for 4 h, and afterwards it was poured into aqueous
NaHCO5-10% Na,S,03 and extracted with CH,Cl,.

® Condition A: TMSOTY as Lewis acid and HP(O)(OMe), as nucleo-
phile. Condition B: BF5-OEt, as Lewis acid and HP(O)(OMe), as
nucleophile. Condition C: TMSOTTf as Lewis acid and P(OMe); as
nucleophile. Condition D: BF3-OEt, as Lewis acid and P(OMe); as
nucleophile.

°Yields are given for products purified by chromatography on silica
gel.

The sequential fragmentation—phosphorylation was
studied first with substrate 9 (Table 1, entries 1-4),
which was treated with DIB-I, and irradiated with vis-
ible light to carry out the fragmentation. Once this step
was completed, a Lewis acid (TMSOTf or BF;OEt,)’
and the nucleophile [HP(O)(OMe), or P(OMe);] were
added.?

When dimethyl phosphonate was used as nucleophile
(entries 1 and 2), no phosphonates were obtained, and
the 2-hydroxypyrrolidine 16°7 was isolated instead.
This result implies that this nucleophile was not reactive
enough to trap the N-acyliminium intermediate, which
therefore reacted with water during the work-up. How-
ever, by using P(OMe); as nucleophile (entries 3 and 4)
the desired o-amino phosphonate 17°® was obtained as
the major product.

The fragmentation of the amino acid analogue 10
(Scheme 2) was studied next (entry 5) in order to deter-
mine whether the reaction results improved by using
amino acids as substrates.'® The one-pot fragmenta-
tion—phosphorylation proceeded in good yield, afford-
ing the amino phosphonate 17. The decarboxylation—
phosphorylation of proline methyl carbamate 11
(entry 6) also proceeded in good yield, affording prod-
uct 18.

When the piperazic acid derivative 12 was used as sub-
strate (entry 7), the reaction gave the desired phospho-
nate 19 in very good yield.!! The same occurred with
the fragmentation of the unnatural amino acid 13
(engy 8), which afforded the phosphonate analogue
20.
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Scheme 2. Reagents and conditions: (i) DIB, I, Av; then 0 °C,
TMSOTf, HP(O)(OMe),; (ii) DIB, I, Av; then 0°C, BF;OEt,,
HP(0)(OMe)s; (iii) DIB, L, /v: then 0°C, TMSOTY, P(OMe)s; (iv)
DIB, I,, Av; then 0 °C, BF3-OEt,, P(OMe);. See Table 1 for product
yields.

The fragmentation of the lysine derivative 14 (entry 8)
surprisingly gave the pipecolinic acid surrogate 21b!32
in good yields. This result can be explained via an inter-
mediate 21a, formed by addition of the e-carbamate
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Scheme 3. Use of precursors from the chiral pool to obtain function-
alized amino phosphonates. Reagents and conditions: (i) DIB
(2.5 mmol), I, (1 mmol), rt, sunlight, 3 h; then 0 °C, P(OMe); (5 equiv)
and BF5-OEt, (2 equiv); 24 (64%) and 25 (15%).

group to the initial N-acyliminium ion.'® On treatment
with the Lewis acid, 21a generated a cyclic acyliminium
ion, which was trapped by the phosphorous nucleophile
to afford 21b.

The fragmentation—phosphorylation of the amino acid
15 (entry 9) posed a challenge since a quaternary centre
would be formed. However, the reaction proceeded in
low yield, generating the interesting o,o-disubstituted
amino phosphonate 22.'4

The sequential decarboxylation—phosphorylation reac-
tion was also studied with substrates bearing stereogenic
centres next to the reacting centre. For instance, when
the (4R)-acetoxyproline derivative 23 (Scheme 3) was
treated with DIB—-iodine and then with BF;-OEt, and
P(OMe);, the amino phosphonate 24!3*1% and its 2-epi-
mer 25139160 were obtained in 64% and 15% yield,
respectively (79% overall yield).

The carbohydrate pool can also provide a variety of pre-
cursors. For instance, the substrate 26 (Scheme 4) was
obtained in two steps from commercial 2-acetamide D-
glucopyranose.

The fragmentation of the alkoxyl radical derived from
26, followed by phosphorylation with BF3;-OEt, and
P(OMe),, afforded a separable 3:2 mixture of the poly-
hydroxylated products 27'7% and 28'7® in 66% global
yield. Since in this case the reaction proceeded via an
acyclic acyliminium ion, a low diastereoselectivity was
observed.'® However, the use of differently protected,
more rigid carbohydrate substrates, should increase
the stereocontrol.!® As shown in this example, the frag-
mentation—phosphorylation of precursors from the
chiral pool can allow the synthesis of highly functional-
ized amino phosphonates.

In summary, the one-pot fragmentation—phosphoryl-
ation reaction is a versatile and efficient pathway to
obtain many different amino phosphonates from readily
available precursors. The biological activity of com-
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Scheme 4. Use of precursors from the chiral pool to obtain function-
alized amino phosphonates. Reagents and conditions: (i) DIB
(2.5 mmol), I, (1 mmol), rt, sunlight, 3 h; then 0 °C, P(OMe); (5 equiv)
and BF;OEt, (2 equiv); 27 (40%) and 28 (26%).

pounds 17-22, 24, 25 and 27, 28, is currently under
study and will be reported in due course.
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(CH, 5-C), 68.5 (CH, Jcp =4 Hz, 3-C), 61.3 (CH,, 6-C),
53.9 (CHs, d, Jcp=6.8Hz, OMe), 534 (CH;, d,
Jcp=6.4Hz, OMe), 45.0 (CH, d, Jcp =159 Hz, 2-C),
23.0 (CH3), 20.6 (3xCHs); MS (EIL, 70eV), m/z: 456
(MT+H, 6), 57 (100); HRMS: caled for C;¢H,7NO,P
456.1271, found 456.1286; (b) The spectroscopic data of
compound 28 were very similar, the main differences being
observed in the "H NMR spectrum (500 MHz, —50 °C): &
8.07 (1H, s, OCHO), 7.14 (1H, br b, NH), 5.64 (1H, dd,
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Jup=11.9 Hz, OMe), 2.14 (3H, s, Ac), 2.12 (3H, s, Ac),
2.05 (3H, s, Ac), 1.99 (3H, s, Ac).

. (a) The stereochemistry of compounds 27 and 28 was

tentatively assigned by comparing the theoretical coupling
constants calculated over the minimized structures for
both diastereomers and the experimental coupling con-
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stants at —50 °C. Since at this temperature the intercon-
version between conformers is very slow, signals for each
conformer are recorded in the NMR experiment; the
intensity of the signals is related to the conformer
population. In our case, the signals of the minor confor-
mations were hardly observed. Presuming that the mini-
mum-energy conformation was the major one, the
experimental J would match the theoretical ones; The
theoretical J were calculated by using the Karplus—Altona
equation implemented in the Macromodel 7.0 program.
See: (b) Haasnoot, C. A. G.; de Leeuw, F. A. A. M.;
Altona, C. Tetrahedron 1980, 36, 2783-2792; (c) Experi-
mental J for product 27: J, 3 =2.4 Hz, J34 = 6.0 Hz, and
for compound 28: J,; =10.0 Hz, J; 4= 10.0 Hz. Calcu-
lated J for the 2R diastereomer: J,3=0.3Hz, J34=
5.0 Hz, and for the 2S diastereomer: J,3; = 8.0 Hz and
‘,3,4 =4.4 Hz.
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