Si=P Double Bonds: Experimental and Theoretical Study of a NHC-Stabilized Phosphasilenylidene**

Daniel Geiß, Marius I. Arz, Martin Straßmann, Gregor Schnakenburg, and Alexander C. Filippou*

Abstract: An experimental and theoretical study of the first compound featuring a Si=P bond to a two-coordinate silicon atom is reported. The NHC-stabilized phosphasilenylidene (IDipp)Si=PMes* (IDipp = 1, 3-bis(2, 6-diisopropylphenyl)imidazolin-2-ylidene, $Mes^* = 2,4,6$ - $tBu_3C_6H_2$) was prepared by SiMe₃Cl elimination from SiCl₂(IDipp) and LiP-(Mes*)SiMe₃ and characterized by X-ray crystallography, NMR spectroscopy, cyclic voltammetry, and UV/Vis spectroscopy. It has a planar trans-bent geometry with a short Si-Pdistance of 2.1188(7) Å and acute bonding angles at Si $(96.90(6)^{\circ})$ and P $(95.38(6)^{\circ})$. The bonding parameters indicate the presence of a Si=P bond with a lone electron pair of high s-character at Si and P, in agreement with natural bond orbital (NBO) analysis. Comparative cyclic voltammetric and UV/Vis spectroscopic experiments of this compound, the disilicon(0) compound (IDipp)Si=Si(IDipp), and the diphosphene Mes*P=PMes* reveal, in combination with quantum chemical calculations, the isolobal relationship of the three double-bond systems.

Phosphaalkynes (**A**, Figure 1) are versatile building blocks in organoelement chemistry. Their chemistry evolved rapidly after the isolation of a derivative that is stable at room temperature (tBuC=P) by Becker et al. in 1981.^[1,2] In comparison, the valence isomers of phosphaalkynes, the

Figure 1. Constitutional isomers of REP (E = C, Si). The lone electron pairs are indicated by two dots.

 [*] D. Geiß, M. I. Arz, M. Straßmann, Dr. G. Schnakenburg, Prof. Dr. A. C. Filippou
 Institut f
ür Anorganische Chemie, Universit
ät Bonn Gerhard-Domagk-Strasse 1, 53121 Bonn (Germany)
 E-mail: filippou@uni-bonn.de

- [***] We thank the Deutsche Forschungsgemeinschaft (SFB 813) for the generous financial support of this work. We also thank C. Schmidt, K. Prochnicki, H. Spitz, Dr. W. Hoffbauer, and Dr. B. Lewall for their contribution to the experimental studies.
- Supporting information for this article is available on the WWW under http://dx.doi.org/10.1002/anie.201411264.

their high thermodynamic and kinetic instability,^[3,4] which can be rationalized with the reluctance of phosphorus and the other 3p-block elements towards isovalent s/p hybridization.[5] Consequently, the valence-isoelectronic silicon analogues of phosphaalkynes (C and D in Figure 1) are expected to be highly reactive species. In fact, attempts to generate phosphasilynes (silylidynephosphanes) C from suitable precursors failed so far.^[6] Quantum chemical calculations revealed that the relative stability of phosphasilynes C versus their constitutional isomers **D** (phosphasilenylidenes) correlates with the electronegativity of the substituent R. Electronegative substituents, such as F, OH, OMe, NH2, Me, Ph, stabilize the Si-P triple bond in the linear isomer C, whereas electropositive substituents, such as R = Li, BeH, BH₂, H, SiH₃, favor the bent isomer D featuring a Si-P double bond and a lone pair of electrons at silicon.^[6,7] Remarkably, the parent compound SiPH was recently generated by electric discharge of SiH₄/ PH_3 or $SiH_4/P_4/H_2$ mixtures and shown by FT microwave and millimeter wave absorption spectroscopy to have a bent structure (D, Figure 1) with a Si-P double bond, a P-H single bond and an acute Si-P-H angle of 60.5°, pointing to a significant interaction of the P-H bond with the Si center, as predicted previously by quantum chemical calculations.^[8,9] However, attempts to prepare phosphasilenylidenes (Si= PR), which are stable in solution or in the solid state have not been reported to date.

isophosphaalkynes (B, Figure 1), are still elusive owing to

Recently, N-heterocyclic carbenes (NHCs) have been shown to be particularly useful Lewis bases allowing the stabilization of highly reactive, unsaturated Si species such as Si₂,^[10] SiX₂ (X = Cl,^[11] Br,^[12] I^[13]), SiClR (R = 2,6-Ar₂C₆H₃ (Ar = 2,4,6-Me₃C₆H₂, 2,4,6-*i*Pr₃C₆H₂), N(SiMe₃)(2,6*i*Pr₂C₆H₃)),^[14,15] SiI⁺,^[13] a Si atom,^[16] or R₂Si=Ge; a heavier Group 14 homologue of a vinylidene.^[17] Based on these results we envisaged that NHCs might be also suitable to trap phosphasilenylidenes (:Si=PR), and we thus decided to use the 1,2-elimination methodology of SiMe₃Cl, which proved to be particularly successful in the formation of C=P, C=P, or P=P bonds.^[2a,e,f] Herein, we present the successful implementation of this strategy into Si^{II} chemistry with the synthesis and full characterization of a room-temperature stable NHCstabilized phosphasilenylidene.

SiCl₂(IDipp) (IDipp = 1,3-bis(2,6-diisopropylphenyl)imidazolin-2-ylidene)^[11] and LiP(Mes*)(TMS) (Mes* = 2,4,6- $tBu_3C_6H_2$; TMS = SiMe₃)^[18] were chosen as promising starting materials to test the 1,2-elimination. Addition of one equivalent of LiP(Mes*)(TMS) to a yellow solution of SiCl₂(IDipp) in fluorobenzene at -30°C (Scheme 1) was accompanied by a rapid color change to deep red. After warming to ambient

Angew. Chem. Int. Ed. 2015, 54, 1-7

© 2015 Wiley-VCH Verlag GmbH & Co. KGaA, Weinheim

Wiley Online Library

Scheme 1. Synthesis of (IDipp)Si=PMes* (1) via the assumed intermediate **2.** Lone pair of electrons are represented by two dots; formal charges are encircled.

temperature, a second color change from deep red to brownred was observed with concomitant precipitation of a white solid (LiCl). ³¹P{¹H} NMR analysis of the resulting reaction solution revealed the formation of the NHC-stabilized phosphasilenylidene **1** along with PH(Mes*)(TMS)^[19] and a small amount of P(Mes*)(TMS)₂.^[20] Compound **1** was purified by fractional crystallization from *n*-hexane and isolated as a bright orange, very air-sensitive solid in 39% yield.^[21] Compound **1** is stable at ambient temperature under exclusion of air and moisture for several months.

The course of the reaction leading to **1** was followed by ³¹P{¹H} and ²⁹Si{¹H} NMR spectroscopy at low temperature. The ³¹P{¹H} and ²⁹Si{¹H} spectra of the deep red fluorobenzene solution obtained at -30 °C revealed the formation of an intermediate displaying one ³¹P singlet at $\delta = -117.3$ ppm flanked by two pairs of ²⁹Si satellite signals (${}^{1}J(P,Si) = 232$ Hz and ${}^{1}J(P,Si) = 46$ Hz), and two ${}^{29}Si$ doublets at $\delta = -9.8$ ppm $({}^{1}J(P,Si) = 232 \text{ Hz})$ and $+1.6 \text{ ppm} ({}^{1}J(P,Si) = 46 \text{ Hz})$, respectively.^[21] This intermediate is suggested to be the NHCstabilized phosphinosilylene 2 based on a comparison of its NMR features with those of the base-stabilized silicon(II) phosphanides (phosphinosilylenes) (PhC(NtBu)₂)SiP(TMS)₂ $(\delta_{SiP} = +44 \text{ ppm} (^{1}J(P,Si) = 194 \text{ Hz}); \delta_{Si}(TMS) = +3.1 \text{ ppm}$ $({}^{1}J(P,Si) = 22.9 \text{ Hz}))^{[22]}$ and Si[P(H)(R)][N(Dipp)(TMS)]- $(IiPr_2Me_2)$ (R = 2,6-(2,4,6-Me_3C_6H_2)_2C_6H_3, Dipp = 2,6 $iPr_2C_6H_3$, $IiPr_2Me_2 = 1,3$ -diisopropyl-4,5-dimethylimidazolin-2-ylidene; $\delta_{Si} = -8.8 \text{ ppm} ({}^{1}J(\text{P,Si}) = 145.4 \text{ Hz})).^{[23]}$ Compound 2 eliminates TMSCl upon warming to ambient temperature to give 1 (Scheme 1).

The molecular structure of $1 \cdot \text{Et}_2\text{O}$ was determined by single-crystal X-ray diffraction (Figure 2). Compound **1** features as its isolobal congeners Si₂(IDipp)₂^[10] and P₂Mes*₂^[24] a *trans*-bent planar geometry with a torsion angle C1-Si-P-C28 of 178.10(7)°. The angles at the Si (P-Si-C1 96.90(6)°), and the P atom (Si-P-C28 95.38(6)°) resemble those of Si₂(IDipp)₂ (Si-Si-C 93.37(5)°)^[10] and P₂Mes*₂ (P-P-C 102.8(1)°), respectively.^[24] These angles indicate that silicon and phosphorus use predominantly p-orbitals for the Si=P bond in **1** and suggest furthermore the presence of a lone electron pair with high s character at each atom, in full

Figure 2. DIAMOND plot of the molecular structure of 1-Et₂O at 123 K in the solid state.^[42] Ellipsoids are set at 30% probability; hydrogen atoms and the solvent are omitted for clarity. Selected bond lengths [Å], angles [°], and torsion angles [°]: Si–P 2.1188(7), Si–C1 1.960(2), P–C28 1.877(2); P-Si-C1 96.90(6), Si-P-C28 95.38(6), C1-Si-P-C28 178.10(7), N1-C1-Si-P 92.7(2), N2-C1-Si-P –103.9(1), Si-P-C28-C29 81.4(1), Si-P-C28-C33 –91.7(1).

agreement with the results of the natural bond orbital (NBO) analysis of **1** (see below). The Si=P bond length of **1** (2.1188(7) Å) compares well with the mean value (2.1315(1) Å) of the Si=Si bond length of Si₂(IDipp)₂ (2.229(1) Å)^[10] and the P=P bond length of P₂Mes*₂ (2.034(2) Å),^[24] and lies in the range of the Si=P bond lengths of phosphasilenes (silylidenephosphanes) (R₂Si=PR: d(Si=P) = 2.062(1)-2.172(1) Å).^[25] Notably, the Mes* and the NHC substituents are oriented almost orthogonally to the central core, with dihedral angles of 92.7(2)° (N1-C1-Si-P) and 81.4(1)° (Si-P-C28-C29). The same conformation was observed in Si₂(Idipp)₂ (N-C-Si-Si# 90.8°), whereas in P₂Mes*₂ the Mes* substituents adopt a twisted conformation (C-C-P-P# 61.5°).^[24,26]

Salient spectroscopic features of 1 are the very deshielded ²⁹Si and ³¹P nuclei. In fact, the ²⁹Si{¹H} NMR spectrum of **1** in C_6D_6 displays a doublet signal at $\delta = 267.3$ ppm (¹J(P,Si) = 170.4 Hz), which appears at even lower field than that of $Si_2(IDipp)_2$ ($\delta(^{29}Si) = 224.5$ ppm in $C_6D_6)^{[10]}$ or the most deshielded ²⁹Si NMR signal of a phosphasilene (δ (²⁹Si) of $(tBu_3Si)(Trip)Si=PH$ (E isomer) = 249.8 ppm).^[27,28] The large ¹J(P,Si) coupling constant of 170.4 Hz is indicative of Si=P bonds^[27,28] and considerably larger than those of silyl phosphanes.^[29] Similarly, the ³¹P{¹H} NMR spectrum of **1** in C₆D₆ shows a strongly deshielded singlet signal at $\delta = 402.4$ ppm with ²⁹Si satellites (${}^{1}J(P,Si) = 170.4 \text{ Hz}, 4.9 \%$). The ³¹P NMR signal of 1 appears at even lower field than the most deshielded ³¹P NMR signal observed so far for a phosphasilene (δ (³¹P) of (*t*Bu₂MeSi)₂Si=PMes* in C₆D₆ = 389.3 ppm, ${}^{1}J(P,Si) = 171.3 \text{ Hz})$, [28j, 30] but at higher field than that of the diphosphene $P_2Mes_2^*$ ($\delta({}^{31}P)$ in $C_6D_6 = 494.2 \text{ ppm}$).^[31]

The ³¹P chemical shift of **1** in solution ($\delta_{soln} = 402.4 \text{ ppm}$) compares well with the isotropic value in the solid state ($\delta(^{31}P)_{iso} = 398.3 \text{ ppm}$), suggesting a minor influence of intermolecular or conformational effects on the chemical shift (Table 1).^[21] The chemical shift tensor components δ_{ii} derived from the solid-state MAS ³¹P{¹H} spectrum of **1** reveal a large chemical shift anisotropy with a span $\Delta\delta$ ($\delta_{11}-\delta_{33}$) of

www.angewandte.org

© 2015 Wiley-VCH Verlag GmbH & Co. KGaA, Weinheim

Table 1: Experimental and calculated ³¹P NMR spectroscopic data of 1.^[a]

Compound	Method	δ_{11}	$\delta_{\scriptscriptstyle 22}$	δ_{33}	$\delta_{\rm iso}{}^{\rm [d]}$	$\delta_{ m soln}{}^{[e]}$
(IDipp)Si=PMes* (1)	MAS-NMR B3LYP/6-311G**	1252 ^[b] 1357 ^[c]	31.2 ^[b] 143.2 ^[c]	-88.4 ^[b] -58.2 ^[c]	398.3 480.7	402.4
Mes*P=PMes*	MAS-NMR	1236	249	-3	494	494.2

[a] The experimental values of P₂Mes*₂ are listed for comparison.^[33b] Chemical shifts are given in ppm vs. 85% aqueous H₃PO₄ solution (δ =0 ppm). [b] The principal components of the chemical shift tensor (δ_{11} , δ_{22} , and δ_{33}) were obtained by analysis of the side band intensities of the solid-state MAS ³¹P NMR spectrum of 1. [c] The chemical shielding tensor components σ_{11} , σ_{22} , and σ_{33} of 1 were calculated at the B3LYP/6-311G** level of theory and converted into the chemical shift tensor components δ_{11} , δ_{22} , and δ_{33} using the equations $\delta_{11}(1) = (\sigma_{ii}(PMe_3) - \sigma_{ii}(1)) + \delta(PMe_3)$, where $\sigma_{11}(PMe_3) = \sigma_{22}(PMe_3) =$

 σ_{33} (PMe₃) = 357 ppm calculated at the same level of theory, and δ (PMe₃) is the experimental ³¹P chemical shift of PMe₃ in solution (δ (PMe₃) in C₆D₆ at 298 K = -61.9 ppm. [d] $\delta_{iso} = (\delta_{11} + \delta_{22} + \delta_{33})/3$. [e] ³¹P NMR chemical shift in solution.

1340.4 ppm,^[32] and compare acceptably well with the calculated values at the B3LYP/6-311G^{**} level of theory (Table 1).^[21] The large span value is a salient spectroscopic feature of compounds with E=E bonds.^[33] A comparison of the experimental δ_{ii} values of **1** with those of P₂Mes₂*^[33b] suggests that the neighborhood to the more electropositive Si atom predominantly influences the in-plane tensor component δ_{22} along the Si=P bond axis, and the out-of-plane tensor component δ_{33} pointing in the direction of the Si–P π -bond.^[34] The most significant contribution to the deshielding of the ³¹P nucleus comes as in P₂Mes^{*}₂ from the in-plane tensor component δ_{11} pointing in the direction of the P–C_{Mes*} bond. Its large positive value can be attributed to the low HOMO(n₊)–LUMO(π *) gap of **1** of 3.43 eV, which is similar with that for P₂Mes^{*}₂ ($\Delta E_{HOMO-LUMO} = 3.33$ eV; Figure 3).^[21]

Comparative quantum chemical calculations of 1, Si_2- (IDipp)_2, and $P_2Mes\ast_2^*$ reveal the same number, symmetry

Figure 3. Selected frontier Kohn–Sham orbitals (B3LYP/6-311-G**/RI)-COSX/COSMO(*n*-hexane)) of Si₂(IDipp)₂ (top), **1** (middle), and P_2Mes*_2 (bottom) (isosurface value 0.05 e bohr⁻³) and their respective energies in eV.

Angew. Chem. Int. Ed. 2015, 54, 1-7

© 2015 Wiley-VCH Verlag GmbH & Co. KGaA, Weinheim

properties, shape, and approximate
energy of the frontier orbitals
(LUMO, HOMO, and HOMO-1),
confirming the isolobal linkage
between these three double-bond
systems.^[21,35] The HOMO is in all
cases the symmetric combination of
the lone-pair orbitals (
$$n_+$$
), the
HOMO-1 is the E–E (E=Si, P)
 π bonding orbital, and the LUMO is
the E–E π^* orbital (Figure 3).

Comparison of the frontier orbitals reveals a shift of the HOMO to higher energy in the series Mes*P= PMes* \rightarrow (IDipp)Si=PMes* (1) \rightarrow

(IDipp)Si=Si(IDipp), which can be rationalized by the successive replacement of the PMes* fragment by its electropositive pendant Si(IDipp).^[36] Given the known relation between the HOMO energy and the redox potential for oxidation of isostructural compounds,^[37] an increase of the HOMO energy in the series $P_2Mes^*_2 \rightarrow (IDipp)Si=PMes^* \rightarrow Si_2(IDipp)_2$ was expected to have a major impact on the oxidation potential of these compounds. This was confirmed by comparative cyclic voltammetric studies in 1,2-difluorobenzene at ambient temperature. In fact, the cyclic voltammogram of 1 displays a reversible wave for the oxidation of 1 (Figure 4).^[21,38] Oxidation of 1 occurs at a half-wave

Figure 4. Single-scan cyclic voltammograms of 1 in 1,2-difluorobenzene at different scan rates in the potential range -350-250 mV; reference electrode: $0.4 \text{ M} [\text{Fe}(C_5\text{Me}_5)_2]^{+1/0}/0.1 \text{ M} \text{ N}(n\text{Bu})_4\text{PF}_6/1,2-C_6\text{H}_4\text{F}_2.$

potential $E_{1/2}$ of -53 mV, which lies in between that for the reversible one-electron oxidation of Si₂(IDipp₂) ($E_{1/2} = -794$ mV)^[38] and the irreversible one-electron oxidation of P₂Mes₂* ($E_{1/2} = 1411$ mV; $\nu = 100$ mV s⁻¹)^[39] under the same conditions.^[21,40] The large increase of the oxidation potential by 2.2 V upon moving from Si₂(IDipp)₂ to P₂Mes*₂ reflects the large calculated difference of 2.27 eV between the HOMO energies of the two compounds.

Comparative UV/Vis studies of 1, $Si_2(IDipp)_2$, and P_2Mes*_2 provide additional evidence for the electronic analogy of the three double bond systems (Figure 5). In

These are not the final page numbers!

www.angewandte.org

Figure 5. Electronic absorption spectra of Si₂(IDipp)₂, **1**, and P₂Mes^{*}₂ in *n*-hexane. The arrows indicate the positions of the HOMO $(n_+) \rightarrow$ LUMO $(\pi^* (E=E))$ bands.

general, a bathochromic shift of the absorption bands is observed in the direction $P_2Mes^*_2 \rightarrow 1 \rightarrow Si_2(IDipp)_2$, providing a rational for the observed color change in solution from yellow ($P_2Mes^*_2$) over orange (1) to red ($Si_2(IDipp)_2$). The UV/Vis spectrum of 1 displays three absorption bands at $\lambda =$ 300, 378, and 480 nm (Table 2). Deconvolution of the observed bands, backed up by TDDFT calculations, allowed 1.68, indicating a strong covalent Si-P interaction. This was further confirmed by the Si=P bond cleavage energy (BCE) of 270 kJ mol⁻¹, which is reduced to a ZPVE corrected bond dissociation energy $D^{0}(0)$ of 222 kJ mol⁻¹ upon electronic and geometrical relaxation of the fragments Si(IDipp) and PMes* into their respective triplet ground states.^[36] Interestingly, the energy required for the Si– $C_{\rm NHC}$ bond dissociation ($D^{\circ}(0) =$ 120 kJ mol^{-1}) to give IDipp and the phosphasilenylidene (Si= PMes*) (D, Figure 1) compares well with those of SiX₂-(IDipp) (X = Cl, Br, I: $D^{\circ}(0) = 121 - 124 \text{ kJ mol}^{-1})^{[13]}$ suggesting that 1 might act as a phosphasilenylidene transfer reagent in the presence of a suitable IDipp trapping agent. The phosphasilenylidene displays according to quantum theory a Si=P double bond (d(Si-P) = 2.157 Å), an acute angle at the P atom (Si-P-C_{Mes*} 70.60°), and a short contact between the Si atom and a C_{ortho} atom of the Mes* substituent (d(Si - C) =2.172 Å), leading to an electronic stabilization of the unsaturated silicon center.^[21] It is less stable by 24.5 kJ mol⁻¹ than the silaphosphyne Mes*Si=P (C, Figure 1), which features a linear-coordinated Si atom and a Si-P triple bond (d(Si- $P = 1.968 \text{ Å}).^{[21]}$

In conclusion, the isolation and comprehensive characterization of the NHC-stabilized phosphasilenylidene **1** corrob-

Table 2: UV/Vis absorption bands of 1, $Si_2(IDipp)_2$, and $P_2Mes_2^{*.[a]}$

, ,	,				
	λ_1 ($arepsilon$)	λ_2 (ε)	λ_3 ($arepsilon$)		
(IDipp)Si=Si(IDipp)	348 (1.26×10 ⁴)	466 (1.43×10 ⁴)	523 ^[b]		
(IDipp)Si=PMes* (1)	$300 (9.37 \times 10^3)$	378 (1.49×10 ⁴)	480 ^[b]		
Mes*P=PMes*	283 (1.66×10^4)	$340(3.93 \times 10^3)$	460 (4.63×10 ²)		

[a] λ [nm], ε [Lmol⁻¹ cm⁻¹]. [b] No extinction coefficient could be determined for these shoulder absorption bands.

a full assignment of these bands. The weak band at $\lambda = 480 \text{ nm}$ stems from the symmetry forbidden HOMO(n₊) \rightarrow LUMO($\pi^*(Si=P)$) transition. The corresponding band of P₂Mes*₂ appears at $\lambda = 460 \text{ nm}$,^[41] whereas that of Si₂(IDipp)₂ is not visible owing to its low oscillator strength, but is suggested by deconvolution of the experimental absorption bands to appear at $\lambda = 610 \text{ nm}$, in good agreement with the results of the TDDFT calculations.^[21] Remarkably, the bathochromic shift of this band in the series P₂Mes*₂ (460 nm) \rightarrow (IDipp)Si=PMes* (1, 480 nm) \rightarrow Si₂(IDipp)₂ (610 nm) correlates well with the decreasing HOMO–LUMO gap in the same direction.

A further insight into the electronic structure of **1** was provided by a natural bond orbital (NBO) analysis of the wavefunction of **1**, which revealed a high localization of the molecular orbitals describing the Si=P double bond. Thus, the σ bond NBO features an occupation of 1.90 electrons, whereas the π bond NBO is filled with 1.92 electrons. Both orbitals are slightly polarized towards the P atom (62% and 67%, respectively) and are formed mainly from p-orbitals of the corresponding atoms. Both lone pair NBOs at P and Si have predominant s character and show an occupation of 1.95 electrons and 1.88 electrons, respectively. The moderate polarization of the Si=P bond and the high occupation numbers of its NBOs lead to a high Wiberg Bond Index of orates the ability of N-heterocyclic carbenes to stabilize unprecedented bonds between the heavier 3p block elements. Compound **1**, which is the first example of a compound featuring a Si=P bond to a two-coordinate silicon atom, contains with the Si=P bond and the Si and P lone pairs many potential reactive sites for further functionalization. Most inspiring is, however, the perspec-

tive to use **1** as transfer reagent of the elusive phosphasilenylidene :Si=PMes* taking advantage of the comparably low Si $-C_{NHC}$ bond dissociation energy. In fact, preliminary studies on the reactions of **1** with unsaturated metal complexes substantiate this perspective.

Received: November 20, 2014 Published online:

Keywords: isolobal relationship · main-group elements · multiple bonds · phosphorus · silicon

- [1] G. Becker, G. Gresser, W. Uhl, Z. Naturforsch. B 1981, 36, 16– 19.
- [2] Reviews: a) R. Appel, F. Knoll, I. Ruppert, Angew. Chem. Int. Ed. Engl. 1981, 20, 731-744; Angew. Chem. 1981, 93, 771-784;
 b) M. Regitz, P. Binger, Angew. Chem. Int. Ed. Engl. 1988, 27, 1484-1508; Angew. Chem. 1988, 100, 1541-1565; c) J. F. Nixon, Chem. Rev. 1988, 88, 1327-1362; d) L. N. Markovski, V. D. Romanenko, Tetrahedron 1989, 45, 6019-6090; e) M. Regitz, Chem. Rev. 1990, 90, 191-213; f) Multiple Bonds and Low Coordination in Phosphorus Chemistry (Eds.: M. Regitz, O. J. Scherer), Georg Thieme, Stuttgart, 1990; g) J. F. Nixon, Chem. Soc. Rev. 1995, 24, 319-328; h) M. Yoshifuji, Pure Appl. Chem. 2005, 77, 2011-2020; i) J. M. Lynam, Organomet. Chem. 2007, 33, 170-178.

www.angewandte.org

© 2015 Wiley-VCH Verlag GmbH & Co. KGaA, Weinheim

- [3] L. Weber, Eur. J. Inorg. Chem. 2003, 1843–1856, and references therein.
- [4] a) K. K. Lehmann, S. C. Ross, L. L. Lohr, J. Chem. Phys. 1985, 10, 4460-4469; b) M. T. Nguyen, T.-K. Ha, J. Mol. Struct. (Theochem) 1986, 139, 145-152; c) E. Goldstein, S. Jin, M. R. Carrillo, R. J. Cave, J. Comput. Chem. 1993, 14, 186-194; d) H. S. Hong, R. J. Cave, J. Phys. Chem. 1994, 98, 10036-10041; e) X. Cheng, Y. Zhao, L. Li, X. Tao, J. Mol. Struct. (Theochem) 2004, 682, 137-143; f) J. B. Ingels, J. M. Turney, N. A. Richardson, Y. Yamaguchi, H. F. Schaefer III, J. Chem. Phys. 2006, 125, 104306.
- [5] a) W. Kutzelnigg, Angew. Chem. Int. Ed. Engl. 1984, 23, 272–295; Angew. Chem. 1984, 96, 262–286; b) W. Kutzelnigg, J. Mol. Struct. (Theochem) 1988, 169, 403–419; c) M. Kaupp, J. Comput. Chem. 2007, 28, 320–325.
- [6] M. Driess, C. Monsé, D. Bläser, R. Boese, H. Bornemann, A. Kuhn, W. Sander, J. Organomet. Chem. 2003, 686, 294-305.
- [7] C.-H. Lai, M.-D. Su, S.-Y. Chu, Inorg. Chem. 2002, 41, 1320– 1322.
- [8] V. Lattanzi, S. Thorwirth, D. T. Halfen, L. A. Mück, L. M. Ziurys, P. Thaddeus, J. Gauss, M. C. MacCarthy, *Angew. Chem. Int. Ed.* **2010**, *49*, 5661–5664; *Angew. Chem.* **2010**, *122*, 5795–5798.
- [9] a) K. J. Dykema, T. N. Troung, M. S. Gordon, J. Am. Chem. Soc. 1985, 107, 4535-4541; b) A. G. Baboul, H. B. Schlegel, J. Am. Chem. Soc. 1996, 118, 8444-8451; c) D. B. Chesnut, Chem. Phys. 2005, 315, 59-64.
- [10] Y. Wang, Y. Xie, P. Wei, R. B. King, H. F. Schaefer III, P. v. R. Schleyer, G. H. Robinson, *Science* **2008**, *321*, 1069–1071.
- [11] R. S. Ghadwal, H. W. Roesky, S. Merkel, J. Henn, D. Stalke, Angew. Chem. Int. Ed. 2009, 48, 5683–5686; Angew. Chem. 2009, 121, 5793–5796.
- [12] A. C. Filippou, O. Chernov, G. Schnakenburg, Angew. Chem. Int. Ed. 2009, 48, 5687–5690; Angew. Chem. 2009, 121, 5797–5800.
- [13] A. C. Filippou, Y. N. Lebedev, O. Chernov, M. Straßmann, G. Schnakenburg, *Angew. Chem. Int. Ed.* **2013**, *52*, 6974–6978; *Angew. Chem.* **2013**, *125*, 7112–7116.
- [14] A. C. Filippou, O. Chernov, B. Blom, K. Stumpf, G. Schnakenburg, *Chem. Eur. J.* 2010, *16*, 2866–2872.
- [15] H. Cui, C. Cui, Dalton Trans. 2011, 40, 11937-11940.
- [16] Y. Xiong, S. Yao, S. Inoue, J. D. Epping, M. Driess, Angew. Chem. Int. Ed. 2013, 52, 7147–7150; Angew. Chem. 2013, 125, 7287–7291.
- [17] a) A. Jana, V. Huch, D. Scheschkewitz, *Angew. Chem. Int. Ed.* 2013, *52*, 12179–12182; *Angew. Chem.* 2013, *125*, 12401–12404;
 b) A. Jana, M. Majumdar, V. Huch, M. Zimmer, D. Scheschkewitz, *Dalton Trans.* 2014, *43*, 5175–5181.
- [18] a) G. Märkl, K. M. Raab, *Tetrahedron Lett.* 1989, 30, 1077-1080;
 b) S. Sasaki, M. Yoshifuji, N. Inamoto, *Arcivoc* 2012, 2, 15-23.
- [19] V. D. Romanenko, A. V. Ruban, S. V. Iksanova, L. K. Polyachenko, L. N. Markovski, *Phosphorus Sulfur Relat. Elem.* 1985, 22, 365–368.
- [20] a) R. Appel, W. Paulen, Angew. Chem. Int. Ed. Engl. 1983, 22, 785-786; Angew. Chem. 1983, 95, 807-808; b) A. H. Cowley, M. Pakulski, N. C. Norman, Polyhedron 1987, 6, 915-919; c) M. Yoshifuji, K. Shimura, K. Toyota, Bull. Chem. Soc. Jpn. 1994, 67, 1980-1983.
- [21] The synthesis and full characterization of 1, including the solution and solid-state NMR spectra, cyclic voltammograms, results of the quantum chemical calculations, and comparisons of the experimental and the calculated UV/Vis spectra of 1, $Si_2(IDipp)_2$, and $P_2Mes_2^*$ are given in the Supporting Information.
- [22] S. Inoue, W. Wang, C. Präsang, M. Asay, E. Irran, M. Driess, J. Am. Chem. Soc. 2011, 133, 2868–2871.
- [23] H. Cui, J. Zhang, C. Cui, Organometallics 2013, 32, 1-4.

Angew. Chem. Int. Ed. 2015, 54, 1-7

- [24] M. Yoshifuji, I. Shima, N. Inamoto, K. Hirotsu, T. Higuchi, J. Am. Chem. Soc. 1981, 103, 4587–4589.
- [25] A CSD survey (21.11.2014) gave 15 compounds with Si=P double bonds, leading to a median and a mean Si=P bond length of 2.092 Å and 2.093 Å, respectively.
- [26] H.-L. Peng, J. L. Payton, J. D. Protasiewicz, M. C. Simspon, J. Phys. Chem. A 2009, 113, 7054-7063.
- [27] M. Driess, S. Block, M. Brym, T. M. Gamer, Angew. Chem. Int. Ed. 2006, 45, 2293–2296; Angew. Chem. 2006, 118, 2351–2354.
- [28] a) C. N. Smith, F. Bickelhaupt, Organometallics 1987, 6, 1156-1163; b) E. Niecke, E. Klein, M. Nieger, Angew. Chem. Int. Ed. Engl. 1989, 28, 751-752; Angew. Chem. 1989, 101, 792-793; c) M. Driess, Angew. Chem. Int. Ed. Engl. 1991, 30, 1022-1024; Angew. Chem. 1991, 103, 979-981; d) G. R. H. Bender, E. Niecke, M. Nieger, J. Am. Chem. Soc. 1993, 115, 3314-3315; e) M. Driess, S. Rell, H. Pritzkow, J. Chem. Soc. Chem. Commun. 1995, 253-254; f) M. Driess, Coord. Chem. Rev. 1995, 145, 1-25; g) M. Driess, H. Pritzkow, S. Rell, U. Winker, Organometallics 1996, 15, 1845-1855; h) S. Yao, S. Block, M. Brym, M. Driess, Chem. Commun. 2007, 3844-3846; i) M. Driess, S. Rell, H. Pritzkow, R. Janoschek, Angew. Chem. Int. Ed. Engl. 1997, 36, 1326-1329; Angew. Chem. 1997, 109, 1384-1387; j) V. Y. Lee, M. Kawai, A. Sekiguchi, H. Ranaivonjatovo, J. Escudié, Organometallics 2009, 28, 4262-4265; k) B. Li, T. Matsuo, D. Hashizume, H. Fueno, K. Tanaka, K. Tamao, J. Am. Chem. Soc. 2009, 131, 13222-13223; l) B. Li, T. Matsuo, T. Fukunaga, D. Hashizume, H. Fueno, K. Tanaka, K. Tamao, Organometallics 2011, 30, 3453-3456; m) K. Hansen, T. Szilvási, B. Blom, S. Inoue, J. Epping, M. Driess, J. Am. Chem. Soc. 2013, 135, 11795-11798; n) P. Willmes, M. J. Cowley, M. Hartmann, M. Zimmer, V. Huch, D. Scheschkewitz, Angew. Chem. Int. Ed. 2014, 53, 2216-2220; Angew. Chem. 2014, 126, 2248-2252.
- [29] G. Fritz, P. Scheer, Chem. Rev. 2000, 100, 3341-3401.
- [30] The ³¹P NMR chemical shifts of phosphasilenes (R₂Si=PR) depend strongly on the P-substituent and range from -33 ppm (Ref. [28i]) to + 389.3 ppm (Ref. [28j]). Interestingly, the ylidic phosphasilene LSi=PH (L = CH(C=CH₂)CMe(NDipp)₂) shows an exceptional shielded ³¹P NMR signal at δ = -293.9 ppm (¹J(P,Si) = 186.4 Hz) (Ref. [28m]).
- [31] M. Schaffrath, A. Villinger, D. Michalik, U. Rosenthal, A. Schulz, Organometallics 2008, 27, 1393–1398.
- [32] J. Mason, Solid State Nucl. Magn. Reson. 1993, 2, 285-288.
- [33] Selected references: a) K. W. Zilm, G. A. Lawless, R. M. Merrill, J. M. Millar, G. G. Webb, J. Am. Chem. Soc. 1987, 109, 7236–7238; b) K. W. Zilm, G. G. Webb, A. H. Cowley, M. Pakulski, A. Orendt, J. Am. Chem. Soc. 1988, 110, 2032–2038; c) D. Gudat, W. Hoffbauer, E. Niecke, W. W. Schoeller, U. Fleischer, W. Kutzelnigg, J. Am. Chem. Soc. 1994, 116, 7325–7331; d) R. West, J. D. Cavalieri, J. J. Buffy, C. Fry, K. W. Zilm, J. C. Duchamp, M. Kira, T. Iwamoto, T. Müller, Y. Apeloig, J. Am. Chem. Soc. 1997, 119, 4972–4976; e) J. J. Buffy, R. West, M. Bendikov, Y. Apeloig, J. Am. Chem. Soc. 2001, 123, 978–979.
- [34] The principal axis system of the ³¹P magnetic shielding tensor in the molecular frame of 1 was calculated using EFGShield2.4 (S. Adiga, D. Aebi, D. L. Bryce, *Can. J. Chem.* 2007, 85, 496–505) and is depicted in the Supporting Information.
- [35] The isolobal analogy between Si₂(IDipp)₂ and diphosphenes was mentioned recently without justification: D. Himmel, I. Krossing, A. Schnepf, *Angew. Chem. Int. Ed. Angew. Chem. Int. Ed.* **2014**, *53*, 370–374; *Angew. Chem.* **2014**, *126*, 378–382.
- [36] Both fragments have a triplet ground state with a ZPVE corrected singlet–triplet gap of $-56.3 \text{ kJ mol}^{-1}$ (PMes*) and $-30.6 \text{ kJ mol}^{-1}$ (Si(IDipp)) calculated at the B3LYP/6-311G** level of theory.
- [37] a) C.-G. Zhan, J. A. Nichols, D. A. Dixon, J. Phys. Chem. A 2003, 107, 4184–4195; b) I. Dance, Inorg. Chem. 2006, 45, 5084–5091.

C 2015 Wiley-VCH Verlag GmbH & Co. KGaA, Weinheim

These are not the final page numbers!

www.angewandte.org

- [38] Oxidation of **1** by $[Fe(C_5Me_5)_2]B(Ar^F)_4 (Ar^F = 2,4,6-(CF_3)_3C_6H_2)$ occurs rapidly in fluorobenzene at -40 °C. Attempts to isolate the radical salt $[(IDipp)Si=PMes^*]B(Ar^F)_4$ were unsuccessful owing to its thermolability. In comparison, the green radical salt $[Si_2(IDipp)_2]B(Ar^F)_4$ was isolated and fully characterized: "The Reactivity of Molecular Disilicon(0)": A. C. Filippou, O. Schiemann, M. Straßmann, A. Meyer, G. Schnakenburg, M. I. Arz, The 17th International Symposium on Silicon Chemistry (ISOS XVII), Berlin 3–8 August **2014**.
- [39] P₂Mes*₂ also undergoes a reversible one-electron reduction at E_{1/2} = −1836 mV, in full agreement with previous reports, which have shown that the radical anion [P₂Mes*₂]⁻ can be generated chemically and by bulk coulometry in THF solution: a) B. Cetinkaya, P. B. Hitchcock, M. F. Lappert, A. J. Thorne, H. Goldwhite, J. Chem. Soc. Chem. Commun. 1982, 691–693; b) A. J. Bard, A. H. Cowley, J. E. Kilduff, J. K. Leland, N. C. Norman, M. Pakulski, G. A. Heath, J. Chem. Soc. Dalton Trans. 1987, 249–251.
- [40] The half-wave potentials are given versus the $[Fe(C_5Me_5)_2]^{+1/0}$ redox couple, which was shown to be a superior reference standard for potentials to the $[Fe(C_5H_5)_2]^{+1/0}$ redox couple: I. Noviandri, K. N. Brown, D. S. Fleming, P. T. Gulyas, P. A. Lay, A. F. Masters, L. Phillips, *J. Phys. Chem. B* **1999**, *103*, 6713–6722. For comparison reasons, the half-wave potential of the $[Fe(C_5H_5)_2]^{+1/0}$ redox couple was determined under the same conditions and found to be + 562 mV vs. the $[Fe(C_5Me_5)_2]^{+1/0}$ redox couple.
- [41] The UV/Vis spectrum of the diphosphene P₂Mes*₂ was reported in CH₂Cl₂ and analyzed by quantum theory. The results compare well with those described herein: a) see Ref. [26]; b) D. V. Partyka, M. P. Washington, T. G. Gray, J. B. Updegraff III, J. F. Turner II, J. D. Protasiewicz, *J. Am. Chem. Soc.* 2009, 131, 10041-10048.
- [42] CCDC 1037826 contains the supplementary crystallographic data for this paper. These data can be obtained free of charge from The Cambridge Crystallographic Data Centre via www. ccdc.cam.ac.uk/data_request/cif.

6 www.angewandte.org

Communications

Main-Group Multiple Bonds

D. Geiß, M. I. Arz, M. Straßmann, G. Schnakenburg, A. C. Filippou* _____ III- - III

Si=P Double Bonds: Experimental and Theoretical Study of a NHC-Stabilized Phosphasilenylidene

An NHC-stabilized phosphasilenylidene was obtained from $SiCl_2(IDipp)$ (IDipp = 1,3-bis(2,6-diisopropylphenyl)imidazolin-2-ylidene) and LiP(Mes*)(TMS) (Mes*= 2,4,6-tBu₃C₆H₂). The compound was characterized by various experimental and theoretical methods and compared with those of the isolobal congeners (IDipp)Si=Si(IDipp) and Mes*P=PMes*.

© 2015 Wiley-VCH Verlag GmbH & Co. KGaA, Weinheim

einheim www.angewandte.org 7 These are not the final page numbers!