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Abstract: A C¢H silylation of pyridines that seemingly
proceeds through electrophilic aromatic substitution (SEAr)
is reported. Reactions of 2- and 3-substituted pyridines with
hydrosilanes in the presence of a catalyst that splits the Si¢H
bond into a hydride and a silicon electrophile yield the
corresponding 5-silylated pyridines. This formal silylation of
an aromatic C¢H bond is the result of a three-step sequence,
consisting of a pyridine hydrosilylation, a dehydrogenative
C¢H silylation of the intermediate enamine, and a 1,4-dihy-
dropyridine retro-hydrosilylation. The key intermediates were
detected by 1H NMR spectroscopy and prepared through the
individual steps. This complex interplay of electrophilic
silylation, hydride transfer, and proton abstraction is promoted
by a single catalyst.

Catalytic processes that employ hydrosilanes to transform
an unactivated C¢H bond into a synthetically valuable C¢Si
bond are presently garnering tremendous attention.[1] The
current state of the art includes broadly applicable transition-
metal-catalyzed C¢H silylations[2] and a rather unorthodox
C¢Si bond formation promoted by KOtBu,[3] as well as
Friedel–Crafts-type approaches.[4] Something that these and
other methods, except for a few recent examples,[5] share is
that pyridines do not participate readily. Instead, the pyridin-
2-yl donor in 1 usually acts as a robust directing group in
transition-metal-catalyzed C¢H silylation (Figure 1, left).[6]

We disclose herein a counterintuitive solution to the problem
of pyridine C¢H silylation that even leaves the phenyl group
in 1 intact (Figure 1, right).

Our strategy merges 1,4-hydrosilylation of pyridines[7]

(I!II), dehydrogenative C-silylation of N-silylated en-
amines[8,9] (II!III), and retro-hydrosilylation of 1,4-dihydro-
pyridines[10] (III!IV) into a one-pot procedure (Scheme 1).
A simplified description of this three-step sequence is that the

reversible 1,4-hydrosilylation[10] is the tool to break (step 1)
and reestablish (step 3) the aromaticity of the pyridine
I.[11, 14, 15] The actual C¢H silylation event (step 2) happens at
the stage of the dearomatized pyridine, i.e., the 1,4-dihydro-
pyridine II. All steps are mediated by the same catalyst, the
tethered Ru¢S complex V[16] (2 ; Scheme 2). The Ru¢S bond
in V cleaves the Si¢H bond of hydrosilanes into a metal
hydride and a sulfur-stabilized silicon cation (V!VI).[17]

Lewis-basic substrates such as pyridines I[7] or enamines II[8]

abstract the silicon electrophile from VI to form the Ru¢H
complex VII (VI!VII). The dichotomous reactivity of VII is
critical for the success of the present undertaking: it reacts
either as a hydride donor or a proton acceptor, thereby
enabling both hydrosilylations (as step 1; Scheme 1) and
dehydrogenative couplings (as step 2; Scheme 1). When these
components all act in concert, the one-pot transformation of
pyridines I into 5-silylated pyridines IV outlined in Scheme 1
will be achievable.

The individual reactions[7, 8] proceed at room temperature
but the desired sequence then stops at the stage of the 1,4-
dihydropyridine. We therefore tested pyridine (3) as well as
selected 3-[7] and 2-substituted congeners (4–6 and 1; Figure 2)

Figure 1. C¢H bonds in 2-phenylpyridine (1) addressed by conven-
tional (left) and unconventional (right) C¢H silylation.

Scheme 1. Strategy for an electrophilic C¢H silylation of pyridines that
does not follow an SEAr reaction at the pyridine nucleus. Si = triorgano-
silyl.

[*] S. Wíbbolt, Prof. Dr. M. Oestreich
Institut fír Chemie, Technische Universit�t Berlin
Strasse des 17. Juni 115, 10623 Berlin (Germany)
E-mail: martin.oestreich@tu-berlin.de
Homepage: http://www.organometallics.tu-berlin.de

Supporting information and ORCID(s) from the author(s) for this
article are available on the WWW under http://dx.doi.org/10.1002/
anie.201508181.

..Angewandte
Communications

15876 Ó 2015 The Authors. Published by Wiley-VCH Verlag GmbH & Co. KGaA, Weinheim Angew. Chem. Int. Ed. 2015, 54, 15876 –15879

http://dx.doi.org/10.1002/ange.201508181
http://dx.doi.org/10.1002/anie.201508181
http://dx.doi.org/10.1002/anie.201508181
http://dx.doi.org/10.1002/anie.201508181


at 80 88C with catalysts 2a[7] and 2b.[8] The reaction of 4-
substituted pyridines was messy (data not shown). It must be
noted that 2-substituted pyridines 6 and 1 had not been
amenable to room-temperature hydrosilylation.[7] A broad
screening of reaction parameters applied to those pyridines
revealed that parent 3 yields complex mixtures while the
other model compounds showed formation of the desired 5-
silylated pyridine derivative (Figure 2). The reactions of
pyridine 1 with a phenyl group at C2 were fairly clean, and
we continued with 1 to further optimize the method. Also,
unlike the work of Chang, Park, and co-workers,[9] quinoline
yielded an intractable mixture.

Another result of this preliminary screening was that the
use of any solvent, typically non-donating solvents such as
(chlorinated) hydrocarbons, thwarts conversion. As a conse-
quence, reactions were run in excess hydrosilane (10 equiv).
Under these boundary conditions, we tested catalysts 2a–c in
the C¢H silylation of 1 with Me2PhSiH (1!7; Table 1,
entries 1–3). Complex 2b, which was previously used in
enamine dehydrogenative coupling,[8] was superior to 2a from
the pyridine hydrosilylation;[7] 2c,[18] which has an electron-
deficient phosphine ligand, was also less effective. Other
triorganosilanes such as EtMe2SiH, MePh2SiH, and Et3SiH
did not participate in this multistep sequence (Table 1,
entries 4–6).

The optimized reaction setup afforded the 5-silylated 2-
phenylpyridine 7 in 59% yield of isolated product. We
consider this a decent result, keeping in mind that the reaction
passes through several reactive intermediates. Despite the

moderate yields in this and subsequent reactions, we were not
able to identify any major byproducts. We next probed the
scope with respect to pyridines substituted with electronically
different aryl groups in the 2-position (8–12 ; Scheme 3). Both
electron-donating and electron-withdrawing groups were
tolerated. Compound 10, which has a difluorinated aryl
group, afforded an excellent 86 % yield, but a dimethylamino
group in the 4-position of the aryl group led to a diminished

Scheme 2. Cooperative Si¢H bond activation and silicon cation trans-
fer (counteranion BArF

4
¢ omitted for clarity, top), and the tethered

Ru¢S complexes 2 tested as catalysts (bottom). ArF = 3,5-bis(trifluoro-
methyl)phenyl.

Figure 2. Performance of model compounds tested in the initial
screening.

Table 1: Catalyst and hydrosilane identification.[a]

Entry Catalyst Hydrosilane Conv. [%][b]

1 2a (R = Et) Me2PhSiH 33
2 2b (R = iPr) Me2PhSiH 82
3 2c (R =4-FC6H4) Me2PhSiH 47
4 2b (R = iPr) EtMe2SiH 3[c]

5 2b (R = iPr) MePh2SiH no reaction
6 2b (R = iPr) Et3SiH no reaction

[a] Reactions were performed on a 0.14 mmol scale. [b] Determined by
GLC analysis with reference to the starting material. [c] Desired pyridine
not detected by GLC–MS analysis.

Scheme 3. 5-Selective C¢H silylation of 2- and 3-substituted pyridines.
[a] Reactions were performed on a 0.14 mmol scale. Yields of isolated
products after purification by flash chromatography on silica gel.
[b] Isolated from a complex mixture, still containing impurities.
[c] Reaction was performed on a 0.14 mmol scale with 5.0 equiv of the
hydrosilane at 80 88C for 3 h.
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yield of 24 %. Alkylation at C2 of the pyridine was also
accepted although yields were substantially lower (6 and 13 ;
Scheme 3). Except for 3-picoline (4 ; Scheme 3), none of the 3-
substituted pyridines[7] reacted cleanly, usually furnishing low
yields (e.g., 15 % for 5 to afford 22, data not shown). The C¢H
silylation of 4 was successful, giving 65 % yield of isolated
product.

We were also able to detect the assumed key intermedi-
ates, 1,4-dihydropyridines 23 and 24 when monitoring the
reaction of 4 and Me2PhSiH by 1H NMR spectroscopy (4!
23!24 ; Scheme 4). In the presence of excess Me2PhSiH,

pyridine 4 fully converts into 1,4-dihydropyridine 23 within
two hours at room temperature, and no further reaction is
seen at this temperature. Heating at 80 88C then initiates the
C¢H silylation of the N-silylated enamine motif in 23 to
afford the 5-silylated 1,4-dihydropyridine 24 in one hour. No
rearomatized 21 is detected after this time, thus indicating
that the retro-hydrosilylation[10] is rate determining (24!21).
We therefore prepared 23 according to the published
procedure[7] at room temperature (4!23) and subjected it
independently to the dehydrogenative enamine silylation
method[8] with excess hydrosilane at 80 88C (23!24). The
desired 5-silylated 1,4-dihydropyridine 24 was formed, and
the catalyst was removed by filtration through a small pad of
Celite under inert atmosphere. This sample of 24 was then
used for separate investigations of the retro-hydrosilylation,
and it was shown that neither heating at 80 88C nor exposure to
air alone leads to rearomatization. The catalyst is thus

required in the final step (24!21), which is consistent with
earlier findings by Nikonov and co-workers.[10]

We present herein a one-pot transformation that is usually
considered virtually impossible: a formal SEAr of pyridines
with electrophilic silicon. The trick is to temporarily break the
aromaticity and exploit the nucleophilicity of the enamine
intermediate.[11, 14,15] The strategy hinges on the reversible 1,4-
hydrosilylation of pyridines,[7, 10] and we discovered that the
same catalyst also promotes dehydrogenative silylation of the
nucleophilic enamine carbon atom.[8] The net result of this
three-step sequence is a meta-selective C¢H silylation of
mainly 2-substituted pyridines that would otherwise be
difficult to achieve in a single synthetic operation.
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