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ABSTRACT
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R antiparallel cofacial m-stacking

Unsymmetrical heteroacenes, 11-phenylbenzofuro[3,2-

b]carbazole (Ph —BFC) and its alkoxylated derivatives, were readily synthesized by palladium-
catalyzed double N-arylation of arylamines. They characteristically form antiparallel cofacial
their unsymmetrical structures. Their physical properties show their potential for application as active layers in organic field-effect transist

mr-stacking arrangements, which may result from
ors.

The exploration of new organic semiconducting molecules Among them, pentacene has achieved both an exclusively
is a crucial topic in organic-based electronic devices such high hole mobility of~3 cn?-V~1-s™* and a high on/off ratio

as organic field-effect transistors (OFETsRecently, in- of 1082 However, pentacene possesses the disadvantage of
tensive research efforts in this field have led to the develop- undergoing air degradation and/or photooxidation, which
ment of a number of organic semiconductors with high poses problems for its practical use in organic devices.

carrier mobilities comparable to those of amorphous sificéh.
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Recently, heteroacenes with heteroatoms in fused frame-
works, such as thiophene-based dinaphthof2233'-f]-
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thieno[3,2b]thiophene (DNTT! and pyrrole-based indolo- || NG
[3,2-b]carbazoles (IC§)have been shown to be promising Table 1. Synthesis of Ar-BFC 1 by DoubleN-Arylation of
candidates as hole-transporting materials. OFETs based 0pjiine with 6

these heteroacenes have shown high mobilitiesr(~ 2.9

cmf-V-lst for DNTT, urer %.('):2 cntV-1s71 for I(?s) O orr  10mol % Pd(dba), O
and good environmental stabilities because of their lower 20 mol % L N_@_R
HOMO energy levels and larger band gaps than those of OTf 2.8 equiv KyPO,
pentacené®2 Thus, the development of new heteroacene O 1.2 equiv ArNH, O
molecules should be important for the rapid improvement o toluene, 100 °C, 3 days O
of heteroacene-based OFET materials.
One of the key factors responsible for high electronic per- O
formance is the solid-state packing struct(#&2° In general, 6 1a (R = H), 1b (R = OMe)

strong electronic interactions between theslectron-rich

frameworks of adjacent molecules leads to high charge-
carrier mobility. One promising arrangement for strong elec- Q O Li:R'='Bu,R*=H,R*=Me
tronic interaction is a cofaciat-stacking structure. Nuckolls Ly R" = Cy, R? R® = OPr

et al. have investigated a series of substituted pentadenes. R? PR

Among them, a thienyl-substituted compound formed a

cofacial z-stacking structure and showed high OFET per- entry ligand R yield of 1 (%)
formance. In contrast, other derivatives with phenyl substit- 1 Ly H 60
uent(s) was packed with the dominant edge-to-face interac- 2 | H 67

tion between the pentacene core and the phenyl substituents, 3 L H 97¢
that is, without efficient interaction between the pentacene 4 L, OMe 72

cores, resulting in much lower OFET performance. Anthony  ayse of 15 mol % of Pd(dbajand 30 mol % ofL».
et al. also investigated anthradithiophene derivatives with a
cofacial arrangement in the solid state, which displayed high
OFET performancé’ First, the substrate for the douldearylation was synthesized

In this paper, we report the synthesis of 11-arylbenzofuro- gs shown in Scheme 1. Commercially available 3-amino-2-
[3,2-b]carbazole (Ar-BFC), their solid-state structures, and

their physical properties. We have recently reported the
synthesis of 5,11-diphenylindolo[3fjearbazoles (DPh : —
ICs) and dibenzafd']benzo[1,2b:4,5b']difurans (DBBDFs) Scheme 1. Synthesis of Bistriflates
via palladium-catalyzed doubll-arylation of aniline and

Me OMe

intramolecularO-arylation, respectivelye'” Photophysical PN ome \ o
and electrochemical studies of DPIC and DBBDF have B(OH),
N . 1) 'BUONO, BF5Et,0 2
indicated that DBBDF is more stable than DRI toward 5 5

2

o _ Et,0, 20 °C t0 0 °C Pd(PPhg),, Na,CO3
photooxidation. Accordingly, we present here a new hetero- 2)Nal, 1, MeON. 1 _
acene framework based on 11-phenylbenzofuroffsar- T '

DME-H,0, 85 °C
. . 72% 92%
bazole (PR-BFC) as a molecule with enhanced environ-

mental stability compared to DPHC. Unlike DPh-IC and

3
DBBDF, the crystal structures of ABFCs show antiparallel O O O
cofacialzz-stacking arrangements between heteroacene cores, OMe OH oTf
which are expected to cause significant orbital interaction. OMe OH » oTf
BBr; Tf,0O, pyridine
Y O CH2C|2, 0 OC CH2C|2, 0 0C:
5 =g
v N O O (for 2 steps) O
4 5 6

DPh-IC : Y = NPh

DBBDF:Y =0
R
Ar-BFCs (1) methoxydibenzofura@ was converted into iodid® via the
R =H, OCnHzni1 (1=1,6,10) Sandmeyer reaction (72%). The following SuzuMiyaura

cross-coupling reaction with 2-methoxyphenylboronic acid

The synthesis of BFCs was conducted with palladium- produced a 92% yield of. Demethylation of4 and

catalyzed doubléN-arylation as a key reaction (Table ).

(13) Bredas, J. L.; Beljonne, D.; Coropceanu, V.; CorniCem. Re. (15) Miao, Q.; Chi, X. L.; Xiao, S. X.; Zeis, R.; Lefenfeld, M.; Siegrist,
2004 104, 4971. T.; Steigerwald, M. L.; Nuckolls, CJ. Am. Chem. So006 128 1340.

(14) Moon, H.; Zeis, R.; Borkent, E. J.; Besnard, C.; Lovinger, A. J.; (16) Kawaguchi, K.; Nakano, K.; Nozaki, K. Org. Chem2007, 72,
Siegrist, T.; Kloc, C.; Bao, Z. NJ. Am. Chem. So2004 126, 15322. 5119.
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subsequent esterification with triflic anhydride produced a ||| N R

68% yield of bistriflate6 (2 steps). The doublN-arylation

of aniline with 6 was initially examined in the presence of a face-to-face
Pd(dbay (10 mol %), ligandL 118 or L1 (20 mol %), and Qﬁl 3.47 Alnacria)
KsPO, (2.8 equiv) in toluene at 100C (Table 1). The use antiparallel pair

of ligandL ; resulted in a slightly higher yield of the desired ﬁ{}
1a(67%) than that using ligand; (60%) (entries 1 and 2). I3‘43 Alra-to)
A small amount of5 was observed as a byproduct in both 3.47 Almp-my)
reactions, which would be produced via the hydrolysis of antiparallel pair 3

bistriflate 6. Optimally, a 97% yield ofLawas obtained when
using 15 mol % of the palladium catalyst (entry 3). The

coupling of6 with p-anisidine was also successful, resulting b face-to-face

in a 72% vyield oflb (10 mol % Pd) (entry 4). Methoxy- 3.41 A (neme) S
substituted A-BFC 1b is a useful platform for further fJ O et rrfj
transformation. Thus, alkoxylated derivativesand1d were -4"{)

obtained via demethylation dib and subsequent alkylation {}.PSM A (ne-mg)
with the corresponding iodoalkanes (Scheme 2). All Jjj_r{
- A Goma)

Scheme 2. Synthesis of ArBFCs1cand1d Figure 1. Solid-state orderings of ArBFCs (a)la and (b)1d.
N,@OMe 1) BBrs NOOR. arrangement® The antiparallel pairs further stack in a
CH,Cl,, 0 °C cofacial manner, resulting in a one-dimensional stacking
Q 2) NaH, Rl O column. The interplanar-stacking distance between two
o) DMF, 60°C O molecules in the same stacked pait{a, m—my: 3.47
O O A) is slightly greater than that between different pairs
(ma—m: 3.43 A). The pendant phenyl group is inclined at
1b 1c (R = CgHy3) : 84% for 2 steps approximately 57.2 with respect to the acene plane. One

1d (R'= C1oHz1) : 81% for 2 steps phenyl group also has an edge-to-face interaction with the

acene core (G-Cyn: 3.61, 3.80 A) and the phenyl groups
(Con—Cpr: 3.67 A) in neighboring columns (Figure S1,
Ar—BFCs dissolved in common organic solvents such as Supporting Information). Single-crystal structureslofand
CHCl;, THF, and toluene. Therefore, they were purified via 1d were also obtained, and the molecular arrangement was
silica-gel column chromatography and characterizedtby  found to be very similar between the two (Figure S2 oy
and**C NMR spectroscopy and HRMS. Figures 1b and S3 folld; see Supporting Information).
The solid-state ordering dfa, as determined by single-  Similar to 1a, two molecules ofld form a cofacial and
crystal X-ray crystallography, is shown in Figure 1a. As de- antiparallel pair, and the pairs further stack in a cofacial
scribed in our previous repottDBBDF showed a molecular  manner to form a-stacked one-dimensional column. Alkyl
ordering dominated by edge-to-face interactions betweenside-chains interdigitate, giving a lamellar structure (Figure
heteroacene cores, leading to a herringbone arrangements3, Supporting Information). The interplanarstacking
DPh—IC also formed dominant edge-to-face interactions in distances between two molecules in the same pair e,
the solid state. However, the two pendant phenyl groups onz,—m4) and between different pairst{—mq) are the same
the nitrogen atoms of DPHC caused weaker interaction (3.41 A). One phenyl group has an edge-to-face interaction
between the heteroacene cores. In sharp contrast, the solidwith the acene core in neighboring columns£Cyy: 3.48
state ordering ofla is completely different from that of  A) (Figure S3, Supporting Information). Compareda
DBBDF and DPR-IC. Two molecules form a pair with  both the cofacial and the edge-to-face distances are slightly
cofacial and antiparallel stacking (Figure 1a). Such a stacking shorter. The closer packing structure may be due to the self-
structure is probably due to the steric effect of the unsym- assembly property of long alkyl chains.
metrically placed phenyl group. A small molecular dipole  The photophysical and electrochemical data of BECs
moment ofla may also contribute to such an antiparallel are summarized in Figure 2 and Table 2. As shown in the
UV/vis spectra, the absorption maximum éd is slightly
(17) For doubleN-arylation in carbazole synthesis, see: (a) Nozaki, K., plue-shifted compared to that of DPIC and red-shifted

Takahashi, K.; Nakano, K.; Hiyama, T.; Tang, H. Z.; Fujiki, M.; Yamaguchi,
S.; Tamao, KAngew. Chem., Int. E®003 42, 2051. (b) Kuwahara, A.; compared to that of DBBDF. The HOME&.UMO energy

Nakano, K.; Nozaki, K.J. Org. Chem2005 70, 413. (c) Kitawaki, T.; band gap ofia (E;-14), as evaluated from an absorption edge
Hayashi, Y.; Ueno, A.; Chida, Nletrahedron2006 62, 6792. — ; ; ;

(18) Tomori, H.; Fox, J. M.: Buchwald, S. L. Org. Chem200Q 65, (4 =393 nm), is 3.15 eV, which is larger thay-oen-ic
5334.

(19) Charles, M. D.; Schultz, P.; Buchwald, S. Qrg. Lett. 2005 7, (20) Miao, Q.; Lefenfeld, M.; Nguyen, T. Q.; Siegrist, T.; Kloc, C.;
3965. Nuckolls, C.Adv. Mater. 2005 17, 407.

Org. Lett, Vol. 10, No. 6, 2008 1201



£(x 10° M1cm™)

250

350
i (nm)

450

Figure 2. UV/vis spectra ofla, DPh—IC, and DBBDF in CHC}
(1 x 1075 M).

and smaller thaky pgepr. Cyclic voltammetry experiments
of parent PR-BFC la (Figure S4, Supporting Information)
show one reversible oxidation wave in the scan range of
0—1.5V, in contrast to DBBDF, which produces one quasi-
reversible wave, and DPHC, which produces two reversible
waves!® The HOMO energy level ofla (Eqomo-1a), @S
evaluated from the first oxidation onsé&,(°"), is 5.59 eV
below the vacuum leveEomo-1a is betweerEomo-pph-ic
andEpomo-pesor, indicating that PRr-BFC 1ais less sensitive

to oxidative degradation than DPHC. The LUMO energy
level of 1a (E umo-14) IS —2.44 eV, which is lower than
E.umo-pph-ic and E, umo-bpeepr. These experimentally esti-
mated energy levels of the frontier orbitals &k are
consistent with those obtained from MO calculations (see

Table 2. Photophysical and Electrochemical Data of
Heteroacenes

ledge E g E oxpeak E oxonset EHOMO ELUMO
compound (nm)* (eV)® % (V) (eV)d (eVy
la 393 3.15 1.17 1.01 —5.59 —2.44
1c 395 3.14 1.03 0.90 —5.48 —2.34
1d 395 3.14 1.10 0.95 —-5.53 —2.39
DPh-IC/ 422 2.95 0.67 0.46 —-5.08 —2.13

1.24

DBBDF/ 354 3.50 1.59 1.16 —5.78 —2.28

a Absorption edge? Determined from the absorption edgenset
potentials (vs Ag/Ag) of first oxidation wave determined by cyclic
voltammetry: 0.1 M BuNCIO, in CHxCl,, Pt as working and counter
electrodes, scan rate of 50 &2 d Calculated according t&nomo =
-e(Eox®"se'+ 4.58).¢ All values were estimated from the optical band gaps
and Epowmo. f See ref 16.

1202

Supporting Information). The alkoxy substituents on the
phenyl group have little effect on the photophysical properties
of the molecules (Table 2, Figure S5, Supporting Informa-
tion),2* whereas they do affect the electrochemical properties;
HOMO and LUMO levels of the alkoxy derivativels and

1d were found to be higher than those of pargat(Table

2 and Figure S4).

In summary, we report the synthesis of -ABFCs—
unsymmetrical heteroacenes containing both nitrogen and
oxygen atomsvia palladium-catalyzed doub-arylation
of arylamines with dibenzofuran precurgrAr—BFCs are
soluble in common organic solvents and exhibit an antipar-
allel cofacials-stacking structure in the solid state, which
would cause strong electronic coupling. Such-atacking
pattern presumably results from their unsymmetrical struc-
tures. Thus, the present molecular design of the unsym-
metrical introduction of a substituent on a (hetero)acene core
would provide a guide to a cofacial arrangement of the
(hetero)acene core. Photophysical and electrochemical ex-
periments suggest that BFCs should be expected to possess
high oxidative stability. Further studies on the synthesis of
a series of BFCs as well as their application to OFETs are
now in progress in our laboratory.
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