

Available online at www.sciencedirect.com

Tetrahedron Letters 46 (2005) 2185-2187

Tetrahedron Letters

Efficient synthesis of functionalized furans and benzofurans based on a '[3+2] cyclization/oxidation' strategy

Esen Bellur,^{a,b} Ilia Freifeld^b and Peter Langer^{a,*}

^aInstitut für Chemie, Universität Rostock, Albert-Einstein-Str. 3a, D-18051 Rostock, Germany ^bInstitut für Chemie und Biochemie, Universität Greifswald, Soldmannstr. 16, D-17487 Greifswald, Germany

Received 9 January 2005; revised 6 February 2005; accepted 8 February 2005

Abstract—Functionalized furans and benzofurans were prepared by DDQ oxidation of 2-alkylidenetetrahydrofurans, which are readily available by one-pot cyclizations of 1,3-dicarbonyl dianions or 1,3-bis-silyl enol ethers. © 2005 Elsevier Ltd. All rights reserved.

Functionalized furans and benzofurans represent important synthetic building blocks and are present in a variety of biologically relevant natural products, such as the calicogorgins, furan fatty acids, cyctotoxic furanocembranes, gersolanes, pseudopteranes, rosefuran, agassizin, furodysin, mikanifuran or α -clausenan.^{1,2} Although a variety of furan syntheses are known,³ the development of new and convenient strategies is of considerable interest. In the recent years, we reported a number of one-pot syntheses of 2-alkylidenetetrahydrofurans by [3+2] cyclization of free and masked 1,3-dicarbonyl dianions with 1,2-dielectrophiles.⁴ Herein, we wish to report a new and convenient approach to functionalized furans and benzofurans based on a '[3+2] cyclization/oxidation' strategy.^{5,6}

Treatment of 2-alkylidenetetrahydrofuran **2a**, prepared by cyclization of the dianion **1a** of methyl acetoacetate with 1-bromo-2-chloroethane,^{7a} with 2,3-dichloro-5,6dicyano-1,4-quinone (DDQ) afforded the known⁸ furan **3a** (Scheme 1). Optimal results were obtained when an excess of DDQ was employed (2 equiv) and when the reaction was carried out in 1,4-dioxane under reflux for 48 h.⁹ The use of other solvents, oxidizing agents (MnO₂) and conditions proved less effective in terms of yield (Table 1). The formation of **3a** can be explained by oxidation and subsequent aromatization by migration of the exocyclic double bond.

Scheme 1. Synthesis of furans 3a–k. Reagents and conditions: (i): (1) LDA (2.3 equiv), THF, 0 °C, 1 h, (2) –78 °C \rightarrow 20 °C, 14 h, (3) reflux, 12 h; (ii): DDQ (2 equiv), 1,4-dioxane, reflux, 48 h.

Table 1. Optimization of the synthesis of 3b

Solvent	<i>t</i> [h]	Conditions	% ^a
CH ₃ CN	24	Reflux	0
THF	24	Reflux	17
Dioxane	24	20 °C	0
Dioxane	24	Reflux	34
Dioxane	48	Reflux	75
Toluene	24	Reflux	12
CH_2Cl_2	24	Reflux	5

^a Conversion (by ¹H NMR of the crude product).

The preparative scope of our methodology was studied (Table 2). The synthesis of 2-alkylidenetetrahydrofurans **2a,b** and **2d–j** has been previously reported.⁷ The furans **3b–d** were prepared from **2b–d**, containing ethyl, *iso*-propyl and *tert*-butyl ester groups, respectively. The

Keywords: Benzofurans; Cyclization; Furans; Oxidation; Tetrahydrofurans.

^{*} Corresponding author. Tel.: +49 381 4986410; fax: +49 381 4986412; e-mail: peter.langer@uni-rostock.de

^{0040-4039/\$ -} see front matter @ 2005 Elsevier Ltd. All rights reserved. doi:10.1016/j.tetlet.2005.02.040

Table 2. Products and yields

2,3	\mathbf{R}^1	\mathbb{R}^2	R ³	% (2) ^{a,b}	% (3) ^a
a	OMe	Н	Н	65	57
b	OEt	Н	Н	75	59
с	O <i>i</i> Pr	Н	Н	70	52
d	OtBu	Н	Н	74	55
e	OMe	Н	Me	68	41
f	OEt	Н	Et	80	53
g	OtBu	Н	$(CH_2)_2CH(CH_3)_2$	48	54
h	OtBu	Н	(CH ₂) ₆ Cl	91	67
i	OEt	Me	Н	64	51
j	OEt	Et	Н	61	55
k	OEt	–(CH	2)9-	57	80

^a Isolated yields.

^b See Ref. 7.

oxidation of 2-alkylidenetetrahydrofurans 2e–g, prepared by cyclization of the corresponding 1,3-dicarbonyl dianions with 1-bromo-2-chloroethane, afforded the furans 3e–g. The oxidation of chloro-substituted 2alkylidenetetrahydrofuran 2h, prepared from dilithiated *tert*-butyl 10-chloro-3-oxodecanoate (1h), afforded the corresponding furan 3h. The oxidation of 2alkylidenetetrahydrofurans 2i,j, prepared from ethyl 2methylacetoacetate and ethyl 2-ethylacetoacetate, gave the methyl and ethyl substituted furans 3i,j. The cyclization of the dianion of ethyl 2-oxo-cyclododecanecarboxylate with 1-bromo-2-chloroethane afforded the novel 5,12-bicyclic 2-alkylidenetetrahydrofuran 2k. Treatment of the latter with DDQ gave the furan 3k.

The 2,3'-bifuranylidenes **5a,b** were prepared, according to our recently reported methodology,⁷ by cyclization of dilithiated α -acetyl- γ -butyrolactones **4a,b** with 1-bromo-2-chloroethane (Scheme 2). The synthesis of **5a** has been previously reported.⁷ Treatment of **5a,b** with DDQ afforded the furans **6a,b**. The formation of **6a,b** can be explained by oxidation of both the tetrahydrofuran and the lactone moiety. The employment of only one (rather than two) equivalents of DDQ resulted in the formation of a complex mixture.

The cyclization of cyclic 1,3-bis-silyl enol ethers 7a-e with 1-chloro-2,2-dimethoxyethane afforded, following our recently reported methodology,¹⁰ the 5,6-bicyclic 2-alkylidenetetrahydrofurans **8a–e**. The synthesis of

Scheme 2. Synthesis of furans 6a,b. Reagents and conditions: (i): (1) LDA (2.3 equiv), THF, 0 °C, 1 h, (2) -78 °C $\rightarrow 20$ °C, 14 h, (3) reflux, 12 h; (ii): DDQ (2 equiv), 1,4-dioxane, reflux, 48 h.

Scheme 3. Synthesis of benzofurans 9a–e. Reagents and conditions: (i): Me₃SiOTf (0.5 equiv), CH₂Cl₂, -78 °C \rightarrow 20 °C; (ii): 2.0 equiv DBU, THF, 20 °C; (iii): DDQ (2 equiv), 1,4-dioxane, reflux, 24 h.

Table 3. Products and yields

8,9	\mathbb{R}^1	\mathbb{R}^2	\mathbb{R}^3	\mathbb{R}^4	% (8) ^{a,b}	% (9) ^a
a	OEt	Н	Н	Н	38	53
b	OEt	Me	Н	Н	71	75°
c	OMe	Н	Me	Н	90	53
d	OEt	Н	Ph	Н	85	66 [°]
e	OEt	Н	Н	Me	60	62

^a Isolated yields.

^b Yields over two steps (see Ref. 10).

^c Prepared in two steps: (1) dioxane, reflux, (2) DDQ, dioxane, reflux.

8a,d,e has been previously reported.¹⁰ Treatment of the latter with DDQ resulted in formation of the 2,3-unsubstituted benzofurans 9a-e by thermal elimination of methanol and oxidation of the cyclohexene moiety (Scheme 3, Table 3).

A second approach was developed, which allows an efficient synthesis of 2-substituted benzofurans: The cyclization of 1,3-bis-silyl enol ethers **7a,c,d** with propenoxide and epibromohydrin afforded the 5,6-bicyclic 2-alkylidenetetrahydrofurans **10a**–**d** as a mixture of diastereomers. These transformations represent the first examples of cyclizations of cycloalkanone-derived 1,3-bis-silyl enol ethers with epoxides.¹¹ The oxidation of **10a**–**d** with DDQ afforded the benzofurans **11a**–**d** (Scheme 4, Table 4).

Scheme 4. Synthesis of benzofurans 11a–d. (i): TiCl₄ (2 equiv), 4 Å MS, CH₂Cl₂, $-78 \degree C \rightarrow 20 \degree C$, 14 h, 20 °C, 2 h; (ii): DDQ (2 equiv), 1,4-dioxane, reflux, 24–48 h.

Table 4. Products and yields

10,11	\mathbb{R}^1	\mathbb{R}^2	R ³	% (10) ^a	% (11) ^a
a b c	OEt OMe OMe	H Me Ph	Me Me Me	28 30 32	60 65 63
d	OMe	Ph	CH ₂ Br	37	31 ^b

^a Isolated yields.

^b Besides, the corresponding 2,3-dihydrobenzofuran was isolated in 40% yield.

In summary, we have reported a new and efficient approach to a variety of furans and benzofurans based on a [3+2] cyclization/oxidation strategy.

Acknowledgements

Financial support from the DAAD (scholarship for E.B.) and the Deutsche Forschungsgemeinschaft is gratefully acknowledged.

References and notes

- (a) Römpp Lexikon Naturstoffe; Steglich, W., Fugmann, B., Lang-Fugmann, S., Eds.; Thieme: Stuttgart, 1997; for furan natural products, see Refs. 1–11 in: (b) Bach, T.; Krüger, L. Eur. J. Org. Chem. 1999, 2045.
- For reviews of furan syntheses, see: (a) Friedrichsen, W. In *Comprehensive Heterocyclic Chemistry*; Katritzky, A. R., Rees, C. W., Scriven, E. F. V., Eds.; Elsevier: Oxford, 1996; Vol. 2, pp 359–363, and references cited therein; (b) König, B. In *Science of Synthesis*; Thieme: Stuttgart, 2001; Vol. 9, pp 183–285.
- (a) Marshall, J. A.; Robinson, E. D. J. Org. Chem. 1990, 55, 3450; (b) Marshall, J. A.; Wang, X. J. Org. Chem. 1991, 56, 960; (c) Marshall, J. A.; Wang, X. J. Org. Chem. 1992, 57, 3387; (d) Marshall, J. A.; DuBay, W. J. J. Org. Chem. 1993, 58, 3602; (e) Marshall, J. A.; Bartley, G. S. J. Org. Chem. 1994, 59, 7169; (f) Marshall, J. A.; Sehon, C. A. J. Org. Chem. 1995, 60, 5966; (g) Hashmi, A. S. K.; Ruppero, T. L.; Knöfel, T.; Bats, J. W. J. Org. Chem. 1997, 62, 7295; (h) Gabriele, B.; Salerno, G.; De Pascali, F.; Costa, M.; Chiusoli, G. P. J. Org. Chem. 1999, 64, 7693; (i) Sperry, J. B.; Whitehead, C. R.; Ghiviriga, I.; Walczak, R. M.; Wright, D. L. J. Org. Chem. 2004, 69, 3726; (j) Aso, M.; Ojida, A.; Yang, G.; Cha, O.-J.; Osawa, E.; Kanematsu, K. J. Org. Chem. 1993, 58, 3960.
- 4. For reviews of cyclization reactions of free and masked dianions, see: (a) Langer, P. Chem. Eur. J. 2001, 7, 3858;
 (b) Langer, P. Synthesis 2002, 441; (c) Langer, P.; Freiberg, W. Chem. Rev. 2004, 104, 4125.
- 5. For oxidations of benzo-2,3-dihydrofurans, see: (a) Youssefyeh, R. D.; Campbell, H. F.; Airey, J. E.; Klein, S.;

Schnapper, M.; Powers, M.; Woodward, R.; Rodriguez, W.; Golec, S.; Studt, W.; Dodson, S. A.; Fitzpatrick, L. R.; Pendley, C. E.; Martin, G. E. J. Med. Chem. **1992**, 35, 903; for the oxidation of tetrahydrofurans to furans and hexahydrobenzofurans to benzofurans, see for example: (b) Büchi, G.; Chu, P.-S. J. Org. Chem. **1978**, 43, 3717; (c) Brewer, J. D.; Elix, J. A. Aust. J. Chem. **1975**, 28, 1059.

- For isomerizations of bis-enol ethers into furans, see: (a) Babidge, P. J.; Massy-Westropp, R. A. Aust. J. Chem. 1977, 30, 1629; (b) Carvalho, C. F.; Sargent, M. V. J. Chem. Soc., Perkin 1 1984, 1605.
- (a) Langer, P.; Holtz, E.; Karimé, I.; Saleh, N. N. R. J. Org. Chem. 2001, 66, 6057; (b) Langer, P.; Bellur, E. J. Org. Chem. 2003, 68, 9742.
- (a) Kawano, T.; Ogawa, T.; Islam, S.; Ueda, I. *Heterocycles* 2000, *52*, 1279; (b) Wenkert, E.; Guo, M.; Lavilla, R.; Porter, B.; Ramachandran, K.; Sheu, J.-H. *J. Org. Chem.* 1990, *55*, 6203; (c) Al-Awadi, N. A.; Al-Bashin, R. F.; El-Dusouqui, O. M. E. *Tetrahedron Lett.* 1989, *30*, 1699; (d) Piotti, M. E.; Alper, H. *J. Org. Chem.* 1997, *62*, 8484; (e) Kozikowski, A. P.; Li, C.-S. *J. Org. Chem.* 1985, *59*, 778; (f) Ryan, J. F.; Plucker, J., III. *J. Am. Chem. Soc.* 1940, *62*, 2037.
- 9. Representative experimental procedure: To a 1,4-dioxane solution (10 mL) of 2d (0.100 g, 0.54 mmol) was added 2,3-dichloro-5,6-dicyano-p-benzoquinone (DDQ) (0.246 g, 1.09 mmol) under Argon atmosphere at 20 °C. The mixture was heated for 48 h at reflux and, after cooling, the solvent was removed in vacuo. To the residue was added diethylether to give a precipitate which was filtered off. The filtrate was concentrated in vacuo and the residue was purified by column chromatography (silica gel, nhexane/EtOAc = $100:1 \rightarrow 50:1$) to give 3d as a slight yellow oil (0.054 g, 55%); $\tilde{R}_{f} = 0.77$ (*n*-hexane/ EtOAc = 5:1). ¹H NMR (CDCl₃, 300 MHz): $\delta = 1.46$ (s, 9H, OtBu), 3.59 (s, 2H, CH₂), 6.20 (dt, J = 3.3, 0.9 Hz, 1H, CH), 6.33 (dd, J = 3.3, 1.8 Hz, 1H, CH), 7.36 (dd, J = 1.8, 0.9 Hz, 1H, CH). ¹³C NMR (CDCl₃, 150 MHz): $\delta_c = 28.21$ (CH₃), 35.49 (CH₂), 81.54 (C), 107.86, 110.63, 142.06 (CH), 148.64 (C), 168.90 (O=C-O). IR (neat, cm⁻¹): $\tilde{v} = 2980$ (w, C–H), 1739 (s, O=C–O), 1394 (w), 1370 (m), 1340 (w), 1279 (w), 1255 (w), 1234 (m), 1152 (s), 1096 (w), 1013 (w), 734 (w). MS (EI, 70 eV): m/z (%) = 183 $(M^+, 13), 123 (20), 116 (100), 108 (8), 101 (48), 81 (65).$ The exact molecular mass $m/z = 182.0943 \pm 2$ ppm [M⁺] for C₁₀H₁₄O₃ was confirmed by HRMS (EI, 70 eV). All products gave satisfactory spectroscopic data and correct elemental analyses and/or high resolution mass data.
- (a) Langer, P.; Krummel, T. *Chem. Eur. J.* 2001, 7, 1720; for the formation of furans by elimination of methanol from 2-alkylidene-4-methoxytetrahydrofurans, see: (b) Bellur, E.; Görls, H.; Langer, P. *Eur. J. Org. Chem.*, in press.
- For reactions of 1,3-bis-silyl enol ethers with epoxides, see: Langer, P.; Armbrust, H.; Eckardt, T.; Magull, J. *Chem. Eur. J.* 2002, *8*, 1443.