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Abstract: An unpretentious procedure for the conjugate stannyla-
tion of several o,B-unsaturated acceptors using silyl stannanes is re-
ported. Competing reaction pathways of conjugate addition and
reduction are discussed.
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The carbon—tin bond belongs to the most widely used car-
bon-element linkages in organic chemistry.! A classic
way of installing a triorganostannyl group at saturated car-
bon is the indirect 1,4-addition of stannyl lithiums to a,f3-
unsaturated acceptors,2 a reaction that is believed to fol-
low a 1,2-addition—1,3-allylic transposition pathway.?
These anions also provide an entry into tin-based cu-
prates,* and there is a rich chemistry connected with that.’
In order to bypass stannyl lithium generation by reductive
metalation or deprotonation reactions,” alternative ap-
proaches were later elaborated, which rely on cleavage of
tin—element bonds (element = hydrogen, silicon, and tin)
by metalates.® Prior to this development, Chenard et al.}
had realized that interelement linkages, namely silyl stan-
nanes,” are chemoselectively activated by cyanide® or
halides® thus enabling a (transition) metal-free stannyl
transfer onto o,B-unsaturated acceptors.'’

In the course of our investigations towards catalytic asym-
metric conjugate carbon—element bond formation by acti-
vation of element-element bonds with chiral Rh'OH
complexes,'!!1> we also tested silyl stannanes as a source
of nucleophilic tin. These catalyses are usually performed
at elevated temperatures (45-60 °C) in basic aqueous me-
dia using 1,4-dioxane—H,O solvent mixtures and Et;N or
KOH as bases. From control experiments, we quickly
learned that, in fact, several acceptors A do undergo the
desired 1,4-addition with silyl stannanes B in the absence
of a thodium catalyst (A — C, Scheme 1)."* In this com-
munication, we report an unpretentious conjugate stannyl
transfer requiring neither a transition metal nor exclusion
of water.

For simplification, we replaced 1,4-dioxane by THF in
these reactions. In contrast to our previous work,'"'? Et;N
was not effective, which is why we employed NaOAc as
well as KOH as activators. We decided to use the novel si-
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R3SiSnR; (B)
0 (2.5 equiv) SnRs O

/\)J\ MX (1.0 equiv)
R’ X R2

A 50 °C C

THF-H,0 = 20:1 R’ R2
(cyclic or acylic (R = aryl and/or alkyl)
ketones, ester or imides) MX =
NaOAc or KOH

Scheme 1 Transition-metal-free conjugate stannyl transfer

lyl stannane Me;SiSnMe,Ph (1)'*!% in all transformations;
in principle, related known silyl stannanes®’~ do also
work in these reactions. Cyclic o,B-unsaturated ketones
cleanly underwent the conjugate stannylation in high
chemical yields (Table 1)."* No conversion was seen
when the acceptor and 1 were reacted in aqueous THF
without NaOAc or KOH.

We next turned to acyclic a,B-unsaturated carbonyl and
carboxyl compounds (Table 2).'* Under reaction condi-
tions identical to those for cyclic enones (Table 1, entries
1-6), chemical yields were markedly decreased for acy-
clic enones due to competing conjugate reduction
(Table 2, entries 1-4). While only minor amounts (5—
10%) of the reduced acceptor were formed from a B-alkyl-
substituted acceptor (Table 2, entries 1 and 2), appreciable
quantities were isolated in the case of a B-arylated sub-
strate (Table 2, entries 3 and 4). A tentative mechanism of
this undesired side reaction is outlined further below.
Conversely, this 1,4-reduction was virtually not detected

Table 1 Transition-Metal-Free Conjugate Stannylation of Cyclic
a,B-Unsaturated Carbonyl Acceptors'3

Entry  Acceptor Product? Base Yield
(%)
0}
1 b\ NaOAc 85
2 KOH 60
SnMe,Ph

(0]
NaOAc 92
KOH 72
SnMe,Ph
O
NaOAc 90
KOH 93
SnMe,Ph

 Satisfactory elemental analyses were obtained.

0]

(O O= O
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Table 2 Transition-Metal-Free Conjugate Stannylation of Acyclic a,B-Unsaturated Carbonyl and Carboxyl Acceptors'?

Entry Acceptor Product® Base Conjugate Conjugate
reduction stannylation
Yield (%) Yield (%)
o) MePhSn O

1 2 NaOAc ~5 55

2 Me/\)J\Ph Me)\)J\Ph KOH ~10 74

3 0 Me,PhSn O NaOAc 19 59

4 KOH 30 54

Ph/\)J\Ph Ph)\/u\Ph

5 0 Me,PhSn o NaOAc <5 57

6 o /\)I\OB Ph)\/”\oa KOH <5 41

7 Ph O MeoPhSn O NaOAc <5 22

KOH

8 K)J\OB Ph)\)\oa 0 < 50

9 0 MePhSn O NaOAc 0 95

10 KOH 0 54

Ph/\)l\o/\C& Ph)\/”\o/\cF3

11 U j\ MGZPM )Ol\ NaOAc <5 77

12 XN Mo Ph N o KOH <5 83
2 Satisfactory elemental analyses were obtained except for entries 11 and 12.
for a,B-unsaturated carboxyl compounds, esters and im- 1 followed
ides (Table 2, entries 5-12). A standard ethyl ester afford- by hydrolysis Mezpw
ed the stannylated product independent of the double bond conjugate Ph Ph
geometry in modest yields (Table 2, entries 5-8); the addition , 3

. . Me3SiSnMe,Ph (1)
more reactive trifluoroethyl ester performed very well (1.0 equiv) *
(Table 2, entries 9 and 10). Imides are also possible pre- 9 MX (1.0 equiv) 9
cursors, which undergo the stannylation in high yields PhMPh THF=H,0 = 20:1 Ph/\)l\Ph
(Table 2, entries 11 and 12). 2 50°C 4
The origin of the aforementioned competition between .
. ... . . conjugate

conjugate addition and reduction might be understood on reduction | 1
the basis of an interesting methodology developed by H,0
Takeda et al., by which B-aryl (not B-alkyl) a,B-unsaturat- M® g i
eq carbonyl as vyell as carboxyl compollﬁlnds are reduced XMe’s,/ﬁi/SnMezPh H0 MO90H
with thfi Me381C1—NaI—H20 r@gent. Thg prop'osed Me,PhSn _ OSiMes \ ? OSiMes
mechanism involves the 1,4-addition of Me;Sil forming a /Iz/k /\)\

: . . . P NF pp - (MezPhSn); (7) &
B-iodo silyl enol ether with a substantially weakened al- Ph Ph
lylic and benzylic carbon—-iodine bond. Nucleophilic at- 5 6
tack at }odlne by 1.0d1de ”thep breaks this bond MX = NaOAc: 3 (57%), 4 (30%), 7 (30%)
accompanied by formation of diiodine followed by protol- MX = KOH: 3 (15%), 4 (54%), 7 (40%)

ysis.

The same reaction sequence might apply to our
Me;SiSnMe,Ph-MX-H,O system (2 — 3 and 4,
Scheme 2). An allylic and benzylic carbon—tin bond in the
initially formed B-stannyl silyl enol ether (2 — 5) is also
relatively labile and might be prone to nucleophilic attack
at tin accordingly (5 — 6). The nucleophile might be
Lewis base-activated 1 (= 1-MX), a hypervalent silicon in-
termediate.!” When exactly one equivalent of 1 was used,
almost equimolar amounts of (Me,PhSn), (7) and the re-
duced acceptor 4 with acetate as an activator were isolat-
ed; that further supports this assumption (MX = NaOAc).
As hydroxide is a good nucleophile itself (MX = KOH), it

Scheme 2 Tentative ionic mechanism for conjugate reduction

might also attack at tin in intermediate 5 thus producing
more of 4 (54%) than expected on the basis of isolated 7
(40%).

We are also aware of a report by Oshima and Utimoto et
al., in which the Et;B-induced 1,4-reduction of a,B-unsat-
urated carbonyls using Ph;SnH is disclosed.!® The iden-
tical procedure yields - and a-stannylated products for -
alkyl and B-aryl o,B-unsaturated carboxyls, respectively.
We, however, currently rule out radical pathways in our
system.
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The reaction mechanism of this conjugate stannylation it-
self is not completely understood. As the presence of a
Lewis base is essential, it might involve chemoselective
nucleophilic activation of the silyl stannane at the silicon
atom;'” the water tolerance makes the intermediacy of a
stannyl anion at least unlikely. Interaction of thus-activat-
ed silyl stannane with the carbonyl/carboxyl oxygen re-
sulting in 1,2-addition followed by 1,3-allylic trans-
position3 or direct 1,4-addition are conceivable scenarios.

In summary, we have elaborated a facile water-tolerant
protocol for the 1,4-addition of a triorganostannyl group
avoiding the generation of sophisticated tin-based organo-
metallic reagents. We believe that these reaction condi-
tions would be excellent for an asymmetric phase-transfer
catalysis.'®
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