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Abstract: Baylis–Hillman adducts undergo smooth oxidative Mu-
kaiyama–Michael addition and a subsequent cyclization with silyl
enol ethers in the presence of Dess–Martin periodinane (DMP) and
pyridine under mild reaction conditions to afford a new class of di-
hydropyran derivatives in good yields with high diastereoselectivi-
ty. This is the first report on the preparation of cis-fused
dihydropyrans from Baylis–Hillman adducts and silyl enol ethers.
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The dihydropyran ring system is frequently found in var-
ious natural products.1 They are normally prepared by
means of carbonyl-Diels–Alder reaction.2 The ready
availability and versatility of Baylis–Hillman adducts and
their acetates makes them valuable synthetic intermedi-
ates for the synthesis of a variety of heterocycles such as
quinolines, pyrimidones, isoxazolines, pyrazolones, pyr-
rolidines, indolizines, azetidinone, diazacyclophanes, and
chromanones as well as biologically active natural prod-
ucts including a-alkylidene-b-lactams, a-methylene-g-
butyrolactones and mikanecic acids, frontalin, trimethop-
rim, sarkomycin, ilmofosine nuciferol, and many oth-
ers.3,4 Consequently, various nucleophiles such as metal
hydrides, halides, azides, cyanides, alcohols, amines, are-
nes, and active methylene compounds have been used to
prepare a wide range of synthetic intermediates.5–7 How-
ever, there have been no reports on the preparation of
fused dihydropyrans from Baylis–Hillman adducts and si-
lyl enol ethers via an oxidative reaction.

In recent years, hypervalent iodine reagents have occu-
pied an important place in the reactions of natural and syn-
thetic organic chemistry because of their potential
applications in the construction of carbon–carbon and car-
bon–heteroatom bonds.8 One of the most significant ad-
vances in the field, discovery of the Dess–Martin
periodinane (DMP) reagent, opened the door to a mild ox-
idation procedure allowing alcohols to be converted into
the corresponding carbonyl compounds.9 Its widespread
use over the past decade attests to its benign nature and its
ability to succeed under mild oxidation circumstances.
The Dess–Martin periodinane is an oxidizing agent that
overcomes many of the disadvantages associated with ox-
idative methods developed so far.10

In this article, we report a direct and one-pot method for
the preparation of fused dihydropyrans from Baylis–Hill-
man adducts and electron-rich silyl enol ethers using
DMP and pyridine as a novel reagent system. Initially, we
attempted an oxidative Michael and a tandem cyclization
of methyl 2-[hydroxy(phenyl)methyl] acrylate (1) with 1-
cyclohexenyl(1,1,1-trimethylsilyl) ether (2) in the pres-
ence of 1.2 equivalents Dess–Martin periodinane in
dichloromethane. The reaction went to completion within
two hours at room temperature; however, the cyclized
product 3a was obtained in 60% yield together with Mu-
kaiyama–Michael adduct in 25% yield. Surprisingly,
upon addition of 1.5 equivalents of pyridine, the cyclized
product 3a was obtained exclusively in 82% yield
(Scheme 1).

Scheme 1 Preparation of product 3a

The product 3b was thoroughly studied using various
NMR techniques including 1H-decoupling experiments,
double-quantum-filtered correlation spectroscopy (DQF-
COSY), nuclear Overhauser effect spectroscopy (NOE-
SY) and heteronuclear single-quantum correlation
spectroscopy (HSQC). Though four protons in between
1.83–2.69 ppm were easily noticed, which contained the
resonances from the allylic protons at C6 as well, other
seven proton resonances crowded a region of about 0.37
ppm (between 1.28 to 1.65 ppm), resulting in extensive
overlap. Resonances of the five methylene proton pairs in
the molecule could be easily observed with the help of
HSQC experiments. Once these protons were located, the
assignments were carried out with the help of the splitting
patterns, coupling constants as well as the DQFCOSY and
NOESY experiments. For the cyclohexane ring fused to
oxygen containing six-membered ring, all the characteris-
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tic signatures of a 1C4 chair form are observed from the
NMR spectra. Emphatic support comes from couplings,
3JH1a–H2a = ca. 12.8 Hz, 3JH1a–H2e = 3.8 Hz, 3JH1e–H2a = ca.
3.6 Hz, 3JH1e–H2e = ca. 3.6 Hz, 3JH2a–H3a = ca. 12.6 Hz, 3JH2a–

H3e = ca. 3.5 Hz, 3JH3a–H4a = ca. 12.3 Hz, 3JH3e–H4a = 3.2 Hz,
3JH4a–H5 = 10.5 Hz, 3JH4e–H5 = 4.2 Hz, and 1, 3-diaxial
NOE enhacement, H1a/H3a, H1a/H5a and H3a/H5a. Fur-
thermore, the SiCH3/H1a and SiCH3/H1e NOE cross
peaks, provide evidence for O–C(Si) bond in an equatorial
orientation in the cyclohexane ring, thus confirming the
cis fusion of the two six-membered rings. In addition, the
presence of a Ph group adjacent to oxygen is confirmed by
NOE correlations for Ph/SiCH3. Further support comes
from energy-minimized structure (Figure 1).

Figure 1 The characteristic NOEs and energy-minimized structure
of 3b

This result encouraged us to examine other substituted
Baylis–Hillman adducts (Table 1). Interestingly, this
method worked well with substrates derived from both al-
iphatic and aromatic aldehydes. As with cyclohexenyl(tri-
methylsilyl) ether, other silyl enol ethers derived from
acetophenone and cyclopentanone also reacted readily
with Baylis–Hillman adducts under the influence of DMP
and pyridine. The cis-fused dihydropyran was formed ex-
clusively in each reaction, the structure of which has been
confirmed by NOE studies. However, silyl enol ethers un-
derwent exclusively Mukaiyama–Michael addition with
Baylis–Hillman adducts when using 1.2 equivalents of
IBX in DMF (Scheme 2).

Scheme 2 Preparation of product 4
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Table 1 Preparation of cis-Fused Dihydropyrans from Baylis–Hillman Adducts and Silyl Enol Ethers Promoted by DMP and Pyridine

Entry Baylis–Hillman adduct 1 Enol ether 2 Product 3a Time (h) Yield (%)b

a 2.0 82

b 2.0 80

c 3.0 78

d 3.0 79

e 2.0 84
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In all cases, the reactions were clean and afforded the
Michael adducts in good yields. The reaction conditions
were compatible with various functionalities such as ha-
lides, nitriles, aryl methyl ethers, esters, and alkenes
(Table 1). All the products were characterized by 1H
NMR, IR, and mass spectrometry. Of the various hyper-
valent iodine reagents examined, including iodosoben-
zene (PhIO), iodobenzene diacetate [PhI(OAc)2], and 2-
iodoxybenzoic acid (IBX), Dess–Martin periodinane
(DMP) was found to be the best in terms of conversion.
Other oxidants such as Oxone®, CAN, MnO2, and KBrO3

failed to produce the desired product. As solvent, dichlo-
romethane gave the best results. The scope of the DMP-
and pyridine-promoted oxidative tandem reaction was in-
vestigated with respect to various Baylis–Hillman adducts
and silyl enol ethers, and the results are presented in

Table 1.11 The reaction most likely proceeds via an initial
DMP oxidation of Baylis–Hillman adducts and then Mu-
kaiyama–Michael addition with silyl enol ethers and a
subsequent cyclization to afford the product (Scheme 3).

A similar type of cyclization was reported previously to
prepare cis-fused pyranopyrrole derivatives via an in-
verse-electron-demand hetero-Diels–Alder reaction.12

In conclusion, we have described a one-pot oxidative
Michael addition and a tandem cyclization of Baylis–Hill-
man adducts with silyl enol ethers using DMP and pyri-
dine as a novel reagent system. The method offers several
advantages such as high regioselectivity, operational sim-
plicity, mild reaction conditions, cleaner reaction profiles,
simple workup procedure, and the use of readily available
reagents which makes it a useful and attractive strategy

f 3.0 82

g 2.0 81

h 6.0 78

i 3.0 78

j 2.0 80

k 3.0 79

l 2.0 86

a All products were characterized by 1H NMR, IR, and mass spectroscopy.
b Yield refers to pure products after chromatography.

Table 1 Preparation of cis-Fused Dihydropyrans from Baylis–Hillman Adducts and Silyl Enol Ethers Promoted by DMP and Pyridine
 (continued)

Entry Baylis–Hillman adduct 1 Enol ether 2 Product 3a Time (h) Yield (%)b
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for the preparation of highly functionalized dihydropyr-
ans in a single-step operation.
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Scheme 3 A plausible reaction mechanism
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