Journal Pre-Proof

AlCl₃-promoted reaction of cycloalkanones with hydrazones: a convenient direct synthesis of 4,5,6,7-tetrahydro-1*H*-indazoles and their analogues

Rima Laroum, Fabienne Berrée, Thierry Roisnel, Vincent Dorcet, Bertrand Carboni, Abdelmadjid Debache

PII: DOI: Reference:	S0040-4039(19)30743-9 https://doi.org/10.1016/j.tetlet.2019.150988 TETL 150988	
To appear in:	Tetrahedron Letters	
Received Date:	11 June 2019	
Revised Date:	19 July 2019	
Accepted Date:	26 July 2019	

Please cite this article as: Laroum, R., Berrée, F., Roisnel, T., Dorcet, V., Carboni, B., Debache, A., AlCl₃-promoted reaction of cycloalkanones with hydrazones: a convenient direct synthesis of 4,5,6,7-tetrahydro-1*H*-indazoles and their analogues, *Tetrahedron Letters* (2019), doi: https://doi.org/10.1016/j.tetlet.2019.150988

This is a PDF file of an article that has undergone enhancements after acceptance, such as the addition of a cover page and metadata, and formatting for readability, but it is not yet the definitive version of record. This version will undergo additional copyediting, typesetting and review before it is published in its final form, but we are providing this version to give early visibility of the article. Please note that, during the production process, errors may be discovered which could affect the content, and all legal disclaimers that apply to the journal pertain.

© 2019 Published by Elsevier Ltd.

Graphical Abstract

To create your abstract, type over the instructions in the template box below. Fonts or abstract dimensions should not be changed or altered.

AlCl₃-promoted reaction of cycloalkanones with arylhydrazones: a convenient direct synthesis of 4,5,6,7-tetrahydro-1*H*-indazoles and their analogues

Rima Laroum, Fabienne Berrée, Thierry Roisnel, Vincent Dorcet, Bertrand Carboni and Abdelmadjid Debache

Tetrahedron Letters journal homepage: www.elsevier.com

AlCl₃-promoted reaction of cycloalkanones with hydrazones: a convenient direct synthesis of 4,5,6,7-tetrahydro-1*H*-indazoles and their analogues

Rima Laroum,^a Fabienne Berrée,^b Thierry Roisnel,^b Vincent Dorcet, ^b Bertrand Carboni^{b*} and Abdelmadjid Debache ^{a*}

^a Laboratoire de Synthèse des Molécules d'Intérêts Biologiques, Université des Frères Mentouri-Constantine, 25000 Constantine, Algérie ^b Univ Rennes, CNRS, ISCR (Institut des Sciences Chimiques de Rennes), UMR 6226, F-35000 Rennes, France

ARTICLE INFO

Received in revised form

Article history:

Received

Accepted Available online ABSTRACT

The AICl₃-promoted reactions of cycloalkanones with hydrazones are described. This approach represents a mild and operationally simple method to access 2,3-diaryl-4,5,6,7-tetrahydro-1*H*-indazoles and their analogues in good to moderate yields.

2009 Elsevier Ltd. All rights reserved.

Keywords: Cycloalkanones Hydrazones Tetrahydroindazoles Aluminium chloride

Introduction

Nitrogen-containing heterocycles represent one of the most important classes of organic compounds. They are abundant in natural products and are also the major constituents of a variety of drugs.¹ Among the vast number of pharmacologically active heterocyclic compounds, 4,5,6,7-tetrahydro-1*H*-indazoles and their analogues are of particular interest since they possess antiinflammatory,² antituberculosis,³ and antiproliferative properties,⁴ or are sigma-1 receptor ligands,⁵ ER α agonist/ER β antagonists,⁶ cannabinoid-1 receptor inverse agonists,⁷ gamma secretase modulators⁸ or interleukin-2 inducible T-cell kinase inhibitors⁹ (Fig. 1). In parallel, they are also used as ligands in gold, uranium, rhodium, iridium and palladium complexes.¹⁰ 4,5,6,7-Tetrahydro-1H-indazoles are generally prepared via the reaction of aryl hydrazines with 1,3-diketones 2b,4c,11 or α,β unsaturated ketones,12 an approach that is often affected by regioisomer formation. Other important strategies for the construction of the tetrahydro-indazole ring consist of basemediated addition of hydrazones to nitroolefins¹³ metal-catalyzed cyclization of β -bromo- α , β -unsaturated ketones with arylhydrazines,¹⁴ aminohydroxylation of allylic hydrazones,¹⁵ nitrilimine cycloaddition to enamines,¹⁶ or iodine-mediated intramolecular amination.¹⁷ Alternative approaches include modification of a prebuilt bicyclic subunit via oxidation of dihydroindazoles,^{2a,18} partial reduction of indazoles,⁸ Pd(II)- or photoredox-catalyzed C-3 arylation,19 or N-arylation reactions in the presence of Cu(I).20

JOURNAL PRE-PROOF

Tetrahedron Letters

Figure 1. Selected examples of bioactive 4,5,6,7-tetrahydro-1H-indazoles and their analogues.

In this context, it is still relevant to develop simple and direct approaches for the synthesis of this class of heterocycles. Inspired by the work of Minunni²¹ and Cecchi²² and co-workers regarding the reaction of aldohydrazones with benzoylacetic esters, we hypothesized that a similar approach could constitute a direct access to 2,3-diaryl-4,5,6,7-tetrahydro-1*H*-indazoles and their analogues starting from cycloalkanones and aryl hydrazones *via* an acid-catalyzed process (Scheme 1).

Scheme 1. Synthesis of 2,3-diaryl-4,5,6,7-tetrahydro-1H-indazoles.

Results and Discussion

Our investigations were initiated with phenylhydrazone **1a** and cyclohexanone **2a** as model substrates to develop optimal conditions for the formation of **3aa**, as depicted in Table 1. In the presence of AlCl₃ in 1,2-dichloroethane, no reaction occurred at room temperature; however, the desired product was obtained in 49% yield after heating for 15 h at 80 °C (Table 1, entry 1). Lower yields were observed with FeCl₃ and Yb(OTf)₃; the latter had the advantage of requiring only 0.1 equivalents of catalyst (Entries 2-3). The reaction failed with TsOH or PhB(OH)₂ (Entries 4-5). A short study of the influence of the relative amounts of **1a**, **2a** and AlCl₃ showed that the highest yield was obtained with a 1/1.5/2 ratio (Entries 1, 6-8).

Table 1. Optimization of the reaction conditions.

Ph	H N-Ph N +		ewis or Brønsted acid DCE, 80 °C, 16 h	Ph N~Ph
	1a	2a		3 aa
Entry	Acid	2a (equiv.)	^a Acid (equiv.) ^a	Yield 3aa (%) ^b
1	AlCl ₃	1	1	49
2	FeCl ₃	1	1	45
3	Yb(OTf) ₃	1	0.1	35
4	PhB(OH) ₂	1	1	0
5	TosOH	1	1	0
6	AlCl ₃	1.5	2	72
7	AlCl ₃	1	2	53
8	AlCl ₃	2	2	45

The scope of the reaction was then evaluated under the optimized conditions. A range of arylhydrazones 1 derived from phenylhydrazine and aromatic aldehydes were first engaged in this process using cyclohexanone 2a as a model partner (Scheme 1, Table 2). Various electron-donating or withdrawing substituents on the aromatic moiety were tolerated with no significant influence of their nature or location. The lower yield observed for 3ga was attributed to partial demethylation due to the presence of the Lewis acid. The introduction of a substituent at the C-2 position of the cyclohexanone notably decreased the

yield (**3aa** versus **3ab**) and no product was observed with a more hindered substrate such as menthone. In contrast, cycloheptanone and cyclooctanone gave 4,5,6,7-tetrahydro-1*H*-indazole analogues, as α - and β -tetralones, which afforded **3ae** and **3af**, respectively. In the latter case, a single regioisomer was formed. Finally, similar yields were obtained with hydrazones prepared from 4-methyl and chloro-substituted benzaldehydes. It is worth noting that this approach can be extended to a dialkylketone, such as 3-pentanone, while the reaction inexplicably failed with cyclopentanone.

Table 2. Scope of the AlCl₃-catalyzed reaction of alkanones with hydrazones.

^a Reagents and conditions: **1a** (1 mmol), alkanone **2a** (1.5 mmol), AlCl₃ (2 mmol), 1,2-dichloroethane (5 mL), 80 °C, 16 h. ^b Yield was calculated using the ¹H NMR of the crude product with 1,3,5-trimethoxybenzene as an internal standard.

Compounds **3** were fully characterized by ¹H NMR, ¹³C NMR, IR, and mass spectroscopy with experimental data in full agreement with the proposed formula (see ESI). Additionally, the structures of compounds **3ae** and **3af** were confirmed by single crystal X-ray analysis (Fig. 2).²³

Figure 2. X-Ray crystallographic structures of 4,5,6,7-tetrahydro-1*H*-indazoles **3ae** and **3af**.

A plausible mechanism was proposed using 1-benzylidene-2phenylhydrazine **1a** and cyclohexanone **2a** as model reactants (Scheme 2). The formation of aluminum enolate **4** is followed by the addition of hydrazone to afford hydrazinoketone **5**.²⁴ Cyclization provides the corresponding 2,3,4,5,6,7-tetrahydro-*1H*-indazole *via* the elimination of water. The final aromatization step results from oxidation by atmospheric oxygen, either during the reaction or upon workup.^{13,25} This proposal is in agreement with the observed regioselectivity in the case of β -tetralone **3af** resulting from the more stable enolate.

Scheme 2. Proposed mechanism for the formation of 3

Conclusion

A series of 4,5,6,7-tetrahydro-1H-indazoles and their analogues was synthesized *via* the reaction of cycloalkanones with hydrazones promoted by the inexpensive aluminum chloride. Although the yields are only moderate, this direct approach offers the major advantage of using commercially available or easily accessible starting materials with a wide range of structural diversity.

Acknowledgments

This work was supported by the University of Rennes 1 and the Centre National de la Recherche Scientifique (CNRS). RL gratefully acknowledges le Ministère de l'Enseignement Supérieur et de la Recherche Scientifique (Algeria) for financial support (Profas program).

Appendix A. Supplementary data

Experimental procedures for the preparation of compounds **3** and the copies of their ${}^{1}H/{}^{13}C$ NMR spectra) can be found online at

References and notes

- (a) E. Vitaku, D.T. Smith, J.T. Njardarson, J. Med. Chem. 57 (2014) 10257–10274. (b) R. D. Taylor, M. MacCoss, A. D. G. Lawson, J. Med. Chem. 57 (2014) 5845-5859.
- (a) Z. Sui, J. Guan, M.P. Ferro, K. McCoy, M.P. Wachter, W.V. Murray, M. Singer, M. Steber, D.M. Ritchie, D.C. Argentieri, Bioorg. Med. Chem. Lett. 10 (2000) 601–604. (b) H.H. Kim, J.G. Park, T.C. Moon, H.W. Chang, Y. Jahng, Arch. Pharm. Res. 22 (1999) 372–379. (c) M. Nagakura, T. Ota, N. Shimidzu, K. Kawamura, Y. Eto, Y. Wada, J. Med. Chem. 22 (1979) 48–52. (d) V.B. Anderson, M.N. Agnew, R.C. Allen, J.C. Wilker, H.B. Lassman, W.J. Novick Jr., J. Med. Chem. 19 (1976) 318–325.
- S. Guo, Y. Song, Q. Huang, H. Yuan, B. Wan, Y. Wang, R. He, M.G. Beconi, S.G. Franzblau, A.P. Kozikowski, J. Med. Chem. 53 (2010) 649– 659.
- (a) M.J. Ladds, I.M. van Leeuwen, C.J. Drummond, S. Chu, A.R. Healy, G. Popova, A. Pastor Fernandez, T. Mollick, S. Darekar, S.K. Sedimbi, M. Nekulova, M.C. Sachweh, J. Campbell, M. Higgins, C. Tuck, M. Popa, M.M. Safont, P. Gelebart, Z. Fandalyuk, A.M. Thompson, R. Svensson, A.-L. Gustavsson, L. Johansson, K. Faernegaardh, U. Yngve, A. Saleh, M. Haraldsson, A.C. D'Hollander, M. Franco, Y. Zhao, M. Haakansson, B. Walse, K. Larsson, E.M. Peat, V. Pelechano, J. Lunec, B. Vojtesek, M. Carmena, W.C. Earnshaw, A.R. McCarthy, N.J. Westwood, M. Arsenian-Henriksson, D.P. Lane, R. Bhatia, E. McCormack, S. Lain, Nat. Commun. 9 (2018) 1–14. (b) K.M. Kasiotis, E.N. Tzanetou, D. Stagos, N. Fokialakis, E. Koutsotheodorou, D. Kouretas, S.A. Haroutounian, Z. Naturforsch. 70 (2015) 677–690. (c) E. Tzanetou, S. Liekens, K.M. Kasiotis, N. Fokialakis, S.A. Haroutounian, Arch. Pharm. 345 (2012) 804–811.
- I. D. Iyamu, W. Lv, N. Malik, R. K. Mishra, G. E. Schiltz, Bioorg. Med. Chem. 27 (2019), 1824-1835.
- X. Alexia, K. M. Kasiotis, N. Fokialakis, G. Lambrinidis, A. K. Meligova, E. Mikros, S. A. Haroutounian, M. N. Alexis, J. Steroid Biochem. Mol. Biol. 117 (2009) 159-167.
- J.M. Matthews, J.J. McNally, P.J. Connolly, M. Xia, B. Zhu, S. Black, C. Chen, C. Hou, Y. Liang, Y. Tang, M.J. Macielag, Bioorg. Med. Chem. Lett. 26 (2016) 5346–5349.
- K. Gerlach, S. Hobson, C. Eickmeier, U. Gross, C. Braun, P. Sieger, M. Garneau, S. Hoerer, N. Heine, Bioorg. Med. Chem. 26 (2018) 3227–3241
- J.D. Burch, K. Barrett, Y. Chen, J. DeVoss, C. Eigenbrot, R. Goldsmith, M.H.A. Ismaili, K. Lau, Z. Lin, D.F. Ortwine, A.A. Zarrin, P.A. McEwan, J.J. Barker, C. Ellebrandt, D. Kordt, D.B. Stein, X. Wang, Y. Chen, B. Hu, X. Xu, P.-W. Yuen, Y. Zhang, Z. Pei, J. Med. Chem. 58 (2015) 3806–3816.
- (a) S. Radisavljevic, I. Bratsos, A. Scheurer, J. Korzekwa, R. Masnikosa, A. Tot, N. Gligorijevic, S. Radulovic, A. Rilak Simovic, Dalton Trans. 47 (2018) 13696–13712. (b) J. Korzekwa, A. Scheurer, F.W. Heinemann, K. Meyer, Dalton Trans. 46 (2017) 13811–13823. (c) A. Herrera, A. Briceno, T. Gonzalez, A. Linden, F.W. Heinemann, G. Agrifoglio, J. Pastran, R. Dorta, Tetrahedron: Asymmetry. 27 (2016) 759–767. (d) I. Ilaldinov, D. Fatkulina, S. Bucharov, R. Jackstell, A. Spannenberg, M. Beller, R. Kadyrov, Tetrahedron: Asymmetry. 22 (2011) 1936–1941. (e) I.Z. Ilaldinov, D.A. Fatkulina, R. Kadyrov, Russ. J. Org. Chem. 47

(2011) 952–953. (f) M.J. Spallek, S. Stockinger, R. Goddard, O. Trapp, Adv. Synth. Catal. 354 (2012) 1466–1480.

- (a) S.S. Rahmatzadeh, B. Karami, S. Khodabakhshi, J. Chin. Chem. Soc. 62 (2015) 17–20. (b) M. Curini, O. Rosati, V. Campagna, F. Montanari, G. Cravotto, M. Boccalini, Synlett. (2005) 2927–2930. (c) D.V. Sevenard, O.G. Khomutov, M.I. Kodess, K.I. Pashkevich, I. Loop, E. Lork, G.-V. Roschenthaler, Can. J. Chem. 79 (2001) 183–194. (e) C. Ainsworth, Org. Synth. 39 (1959), 27-30.
- (a) M.M. Gar, A.V. Eremeev, K.Yu. Suponitsky, S.V. Popkov, Russ. Chem. Bull. 63 (2014) 1142–1147. (b) A. Nakhai, J. Bergman, Tetrahedron. 65 (2009) 2298–2306. (c) G.A. Nishiguchi, A.L. Rodriguez, J.A. Katzenellenbogen, Bioorg. Med. Chem. Lett. 12 (2002) 947–950.
- (a) X. Deng, N.S. Mani, J. Org. Chem. 73 (2008) 2412–2415. (b) X. Deng, N.S. Mani, Org. Lett. 10 (2008) 1307–1310.
- (a) H.K. Lee, C.S. Cho, Synth. Commun. 43 (2013) 915–921. (b) H.K. Lee, C.S. Cho, Appl. Organomet. Chem. 26 (2012) 570–575.
- 15. Y.-C. Chen, M.-K. Zhu, T.-P. Loh, Org. Lett. 17 (2015) 2712-2715.
- K. Tshiamala, S. Kitane, J. Vebrel, B. Laude, Bull. Soc. Chim. Belg. 95 (1986) 1083–1098. (b) S. Kitane, T. Kabula, J. Vebrel, B. Laude, Tetrahedron Lett. 22 (1981) 1217–1218. (c) M.E. Kuehne, J. Weaver, P. Franz, J. Org. Chem. 29 (1964) 1582–1586.
- W. Wei, Z. Wang, X. Yang, W. Yu, J. Chang, Adv. Synth. Catal. 359 (2017) 3378–3387.

- G. A. Nishiguchi, A. L. Rodriguez, J. A. Katzenellenbogen, Bioorg. Med. Chem. Lett. 12 (2002) 947–950.
- N.A. Romero, K.A. Margrey, N.E. Tay, D.A. Nicewicz, Science 349 (2015) 1326–1330.
- S.E. Ward, M. Harries, L. Aldegheri, N.E. Austin, S. Ballantine, E. Ballini, D.M. Bradley, B.D. Bax, B.P. Clarke, A.J. Harris, S.A. Harrison, R.A. Melarange, C. Mookherjee, J. Mosley, G. Dal Negro, B. Oliosi, K.J. Smith, K.M. Thewlis, P.M. Woollard, S.P. Yusaf, J. Med. Chem. 54 (2011) 78–94.
- (a) G. Minunni, G. Lazzarini, S. D'Urso, Gazz. Chim. Ital. 55 (1925) 502-539. (b) G. Minunni, S. D'Urso, T.G. Troia, A. Carnevale, G. Arezzi, C. Vizzini, Gazz. Chim. Ital. 58 (1928) 691-712.
- L. Cecchi, F. Melani, G. Palazzino, G. Filacchioni, G. C. Porretta, Farmaco 39 (1984) 888-900. (b) L. Cecchi, F. Melani, G. Palazzino, G. Filacchioni, Farmaco 39 (1984) 953-962.
- CCDC 1922242 and 1922243 contains the crystallographic data for compounds 3ae and 3af, respectively. These data can be obtained free of charge from the Cambridge Crystallographic Data Centre via www.ccdc.cam.ac. uk/data_request/cif.
- For a similar mechanistic hypothesis in the case of β-ketoesters, see: K. S. Hariprasad, K. V. Prasada, B. C. Raju, RSC Adv. 6 (2016) 108654-108661.
- 25. A. Citterio, M. Ramperti, E. Vismara, J. Heterocyclic Chern. 18, (1981) 763-765

Highlights

- Direct synthesis of 2,3-diaryl-4,5,6,7tetrahydro-1*H*-indazoles and analogues
- Pharmacologically active heterocyclic compounds
- Commercially available or easily accessible starting materials
- Inexpensive Lewis acid as reagent