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Abstract: A variety of functionalized benzonitriles were regiose-
lectively prepared by formal [3+3] cyclocondensation of 1,3-bis(si-
lyloxy)buta-1,3-dienes with 3-ethoxy- and 3-silyloxy-2-cyano-2-
en-1-ones.

Key Words: arenas, benzonitriles, cyclizations, regioselectivity,
silyl enol ethers

Functionalized benzonitriles represent important building
blocks for the synthesis of natural products, pharmaceuti-
cals, agrochemicals, herbicides, and dyes. Their industrial
scale syntheses mostly rely on the ammoxidation of tolu-
enes. In addition, the reaction of aryl halides with cop-
per(I) cyanide (Rosenmund–von Braun reaction) and the
reaction of diazonium salts with copper(I) cyanide (Sand-
meyer reaction) are frequently used. In 2003, a catalytic
variant has been reported.1 In recent years, nickel- and
palladium-catalyzed cyanations of aryl halides have been
developed.2 5-Cyanosalicylates can be regarded as highly
functionalized benzonitrile derivatives containing an ad-
ditional ester and hydroxyl group. They have been pre-
pared by classic transformation of the corresponding
oximes into the nitriles,3 by application of the Rosen-
mund–von Braun reaction,4 by application of palladi-
um(0)-catalyzed reactions using Zn(CN)2 or KCN,5 and
by Grignard reaction of 4-hydroxy-3,5-diiodobenzonitrile
with carbon dioxide.6 Despite the recent progress in this
area, cyanation reactions often suffer from low catalyst
productivities (compared to other palladium-catalyzed
coupling reactions). In addition, reactions of ortho-substi-
tuted aryl halides are often problematic or not possible at
all or require the use of toxic thallium reagents.7 Last but
not the least, the regioselective synthesis of the required
starting materials, functionalized or highly substituted
aryl halides or triflates, can be a difficult and tedious task.

An alternative strategy for the synthesis of functionalized
benzonitriles relies on the use of appropriate cyano-sub-
stituted building blocks in cyclization reactions. For ex-
ample, ethyl 4-amino-5-cyanosalicylate and related
compounds have been prepared by base-mediated cycliza-
tion of ethoxymethylenemalononitrile with b-keto esters.8

4-Amino-5-cyano-2-hydroxyisophthalic acid diethyl ester
has been synthesized by KOH-mediated cyclization of di-

ethyl acetone-1,3-dicarboxylate with 3-oxopentanedioic
acid diethyl ester.9 4-Amino-2-hydroxy-5-cyanoace-
tophenone is available by cyclization of malodinitrile with
2-acetyl-3-methoxyacrylic acid methyl ester.10 Benzoni-
triles have been prepared also based on Diels–Alder reac-
tions of cyano-substituted alkynes or buta-1,3-dienes.11

Recently, Pulido and Barbero have reported the synthesis
of methyl 3-cyano-4-hydroxy-2-methylbenzoate by [4+2]
cycloaddition of 3-cyano-2,4-bis(silyloxy)penta-1,3-di-
ene with propynoic acid methyl ester.12

Chan and co-workers were the first to report13 the synthe-
sis of salicylates by formal [3+3] cyclizations of 1,3-
bis(silyloxy)buta-1,3-dienes14 with 3-silyloxy-2-en-1-
ones. In recent years, this strategy has been applied to the
synthesis of various functionalized arenes.15 Herein, we
report what are, to the best of our knowledge, the first
[3+3] cyclocondensations of 1,3-bis(silyloxy)buta-1,3-
dienes with cyano-substituted 3-ethoxy- and 3-silyloxy-2-
en-1-ones. These reactions provide a convenient and
regioselective approach to a variety of functionalized 5-
cyanosalicylates, which are not readily available by other
methods.

2-Cyano-3-ethoxy-2-en-1-ones 2a–e were prepared, fol-
lowing a known procedure,16 by reaction of ketonitriles
1a–e with ethyl orthoformiate and acetic anhydride. 1,3-
Bis(silyloxy)buta-1,3-dienes 3a–l were prepared from the
corresponding b-keto esters in two steps.13

The TiCl4-mediated cyclization of 2a with 3a afforded the
5-cyanosalicylate 4a (Scheme 1). The best yield was ob-
tained when the reaction was carried out in a highly con-
centrated solution.17 The cyclization proceeded with
excellent regioselectivity. The formation of product 4a
might be explained by TiCl4-mediated conjugate addition
of the terminal carbon atom of 3a to 2a to give intermedi-
ate A, cyclization via the central carbon of 3a to give
intermediate B (SN¢ reaction), and subsequent aromatiza-
tion.

The formal [3+3] cyclization of 2-cyano-3-ethoxy-2-en-
1-ones 2a–e with 1,3-bis(silyloxy)buta-1,3-dienes 3a–h
afforded the 5-cyanosalicylates 4a–l in 40–61% yields
(Table 1). The substituents R1, located next to the carbon-
yl group of 2a–e, have no significant influence on the
yields. Likewise, the substitution pattern of the diene has
no significant influence on the yield.

The configuration of all products was established by spec-
troscopic methods (2D NMR). The structure of 4a was in-
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dependently confirmed by X-ray crystal structure analysis
(Figure 1).18

3-Cyano-4-(trimethylsilyloxy)pent-3-en-2-one (5) was
prepared by silylation of known19 3-cyano-acetylacetone.
The TiCl4-mediated [3+3] cyclocondensation of 5 with
3a,c,i–l afforded the 5-cyanosalicylates 6a–f in moderate
yields (except for 6d, Table 2).20 The best yields were
again obtained when the reactions were carried out in a
highly concentrated solution. The low yield of 6d can be
explained by TiCl4-mediated cleavage of the tert-butyl
ester.

In conclusion, we have reported a convenient and regiose-
lective synthesis of functionalized benzonitriles by what
are, to the best of our knowledge, the first formal [3+3] cy-
clizations of 1,3-bis(silyloxy)buta-1,3-dienes with cyano-
substituted enones. The products are not readily available
by other methods. The reactions are easy to be carried out,

Scheme 1 Possible mechanism of the formation of 4a
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Table 1 Synthesis of 4a–l

2 3 4 R1 R2 R3 Yield 
(%)a

2a 3a 4a Me H Et 33

2a 3b 4b Me Me Me 41

2a 3c 4c Me Et Et 40

2a 3d 4d Me n-Hex Me 42

2a 3e 4e Me n-Hept Me 40

2b 3b 4f Ph Me Me 43

2b 3c 4g Ph Et Et 42

2b 3f 4h Ph n-Bu Me 41

2b 3g 4i Ph n-Oct Me 40

2c 3b 4j 4-ClC6H4 Me Me 61

2d 3h 4k 4-BrC6H4 n-Non Me 57

2e 3g 4l 4-MeOC6H4 n-Oct Me 50

a Yields of isolated products.
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Figure 1 ORTEP plot of 4a (hydrogen at O3 found in the difference
map and refined freely)

Table 2 Synthesis of 6a–f: Products and Yields

3 6 R1 R2 Yield of 6 (%)a

3i 6a H Me 34

3a 6b H Et 41

3j 6c H i-Bu 40

3k 6d H t-Bu 8

3l 6e Et Me 44

3c 6f Et Et 58

a Yields of isolated products.

6a–f

Me

OTMSO

OOH

OR2

Me

TiCl4
CH2Cl2

–78 to 20 °C, 
20 h

20 °C, 4 h

+

CN

CN

5

R1

Me

Me

4Å MS

3a, c, i–l
OR2

OTMSTMSO

R1



LETTER Synthesis of Functionalized Benzonitriles 203

Synlett 2009, No. 2, 201–204 © Thieme Stuttgart · New York

and the starting materials are readily available. We cur-
rently study the preparative scope of the methodology and
applications to the synthesis of pharmacologically active
products.
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extracted with CH2Cl2. All organic extracts were combined, 
dried (Na2SO4), and filtered. The filtrate was concentrated in 
vacuo. The residue was purified by column chromatography 
(SiO2) to give salicylates 6. Starting with 5 (188 mg, 0.95 
mmol), CH2Cl2 (3.0 mL), MS (4 Å, 0.4 g), TiCl4 (0.11 mL, 
1.0 mmol), and 3i (356 mg, 1.4 mmol), compound 6a was 
isolated by column chromatography (SiO2; n-heptane–
EtOAc, 10:1) as a colorless solid (67 mg, 34%), mp 109–
110 °C; Rf = 0.21 (n-heptane–EtOAc, 10:1); reaction time 
21 h. 1H NMR (250 MHz, CDCl3): d = 2.48 (d, 4J = 0.9 Hz, 

3 H, ArCH3), 2.75 (s, 3 H, ArCH3), 3.98 (s, 3 H, OCH3), 6.76 
(s, 1 H, CHAr), 11.72 (s, 1 H, OH). 13C NMR (75 MHz, 
CDCl3): d = 21.4, 21.8 (ArCH3), 52.7 (OCH3), 107.0, 111.0, 
117.3 (2 × CAr, CN), 117.4 (CHAr), 146.6, 148.4 (CAr), 165.1, 
171.0 (CArOH, CO). IR (KBr): n = 3431 (br, m), 2957 (m), 
2217 (s), 1668 (s), 1601 (s), 1581 (s), 1442 (s), 1368 (s), 
1358 (s), 1319 (s), 1241 (s), 810 (s) cm–1. MS (EI, 70 eV): 
m/z (%) = 205 (83) [M+], 174 (76), 173 (100), 145 (66), 144 
(37), 116 (20), 91 (14). Anal. Calcd for C11H11NO3 (205.21): 
C, 64.38; H, 5.40; N, 6.83. Found: C, 64.64; H, 5.52; N, 6.65.
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