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Abstract: An electron-rich Pd(0) complex, a Pd2(dba)3�CHCl3–tri-
cyclohexylphosphine combination catalyzes highly efficient hy-
drosilylation of alkynes at room temperature with Ph3SiH or
Ph2MeSiH without solvents. The regioselectivity of this process is
higher than that with the conventional Pt(0)-catalyzed hydrosilyl-
ation.
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Transition metal-catalyzed hydrosilylation of alkenes and
alkynes has been extensively investigated, and have found
widespread application ranging from asymmetric synthe-
sis to material science.1 Most of hydrosilylation exploit
transition metal catalysts based on platinum and rhodium
complexes.2–5 Palladium catalysts also effect hydrosilyla-
tion with Cl3SiH,6 and they are particularly important for
enantioselective hydrosilylation with chiral phosphine
ligands.7 However, palladium–phosphine complexes are
not generally employed for hydrosilylation with
triorganosilane because of low catalytic activity. Herein
we wish to report that an electron rich Pd(0)-catalyst,8 a
combination of Pd2(dba)3�CHCl3–trialkylphosphine, effi-
ciently catalyzes stereoselective hydrosilylation of
alkynes with triorganosilanes at room temperature. The
regioselectivity with this protocol is superior to that with
the reported procedure under Pt(0)-catalysis.9

A mixture of Pd2(dba)3�CHCl3 (0.005 mmol), tribu-
tylphosphine (0.02 mmol), and 1-octyne (1.2 mmol) was
stirred for 10 min. To the mixture, triphenylsilane (1.0
mmol) was introduced at room temperature. After 10 min,
purification of the reaction mixture provided (E)-1-octe-
nylsilane 1a in 89% yield (Scheme 1). The Z-isomer was
not detectable in the reaction mixture. A small amount of
the regioisomer 2a, 2-silyl-1-octene, was also obtained
(9%). The palladium catalyst can be reduced to 0.05
mol%. The low catalyst loading also achieved quantitative
conversion within 10 min at room temperature.

To enhance the regioselectivity, we examined various
phosphine ligands in the reaction with 1-octyne as the
substrate. Triarylphosphines such as triphenylphosphine
exhibited low catalytic activity. Although tris(2,4,6-tri-
methoxyphenyl)phosphine had improved activity, the re-
gioselectivity was not acceptable (vide infra). Triethyl-
phosphite achieved quantitative conversion in 6 h, but af-

forded unsatisfactory regiocontrol (1a/2a = 79:21). After
several experiments, we found tricyclohexylphosphine
furnished 1-alkenylsilanes with high regioselectivity (1a/
2a = 98:2) (Scheme 1). Unfortunately, no reaction pro-
ceeded with tri(tert-butyl)phosphine. As the palladium
source, Pd2(dba)3�CHCl3 proved to be the best among
Pd2(dba)3�CHCl3, Pd(OAc)2, PdCl2(PhCN)2, [PdCl(�3-
C3H5)]2, and PdCl2(Ph3P)2.

With the optimized catalytic system in our hand, we ex-
amined the hydrosilylation reaction of various alkynes
with Ph3SiH, Ph2MeSiH, and PhMe2SiH. Table 1 summa-
rizes the results.10 Several characteristics of this process
are noteworthy. A variety of alkynes afforded the desired
products in good yields. Olefin, ester, and silyl ether func-
tionalities are compatible under the reaction conditions.
Triphenylsilane is the most reactive among three silanes,
and afforded excellent yields except for phenylacetylene
(entry 1). As for regiocontrol, both Ph3SiH and Ph2MeSiH
exhibited almost the same selectivity. The reaction of 3,3-
dimethyl-1-butyne required the use of 5.0 equiv of the
alkyne because of the low solubility of Ph3SiH in 3,3-di-
methyl-1-butyne (entry 8). Hydrosilylation with
PhMe2SiH is not so efficient as Ph3SiH and Ph2MeSiH
(entry 13).11 Unfortunately, the use of internal alkynes
such as 6-dodecyne yielded none of the alkenylsilane un-
der the same conditions (entry 14).

In the course of the optimization study, we found an in-
triguing phenomenon: the use of water as a reaction sol-
vent enhances the reactivity of Pd(0)-catalyzed
hydrosilylation of 1-octyne (Scheme 2).12 A better yield
was achieved in water than even the neat conditions with
a Pd2(dba)3�CHCl3–tris(2,4,6-trimethoxyphenyl)phos-
phine combination as the catalyst.13,14 No observable reac-
tion proceeded in CH2Cl2. We also observed the similar
enhancement in hydrosilylation with Pd(Ph3P)4. Howev-
er, the difference in the yield of the product was not sig-

Scheme 1
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nificant under the optimized conditions with the Pd(0)/
Cy3P system.

The Pd2(dba)3�CHCl3–tributylphosphine combination al-
lows efficient hydrosilylation of alkenes at room temper-
ature (Scheme 3). None of 1-alkenylsilanes, which could

be derived via dehydrogenative silylation, was detected in
the reaction mixture.

In conclusion, we have developed an efficient hydrosilyl-
ation protocol with Pd2dba3�CHCl3–tricyclohexylphos-
phine combination. This catalytic system effects rapid
hydrosilylation with excellent regiocontrol at room tem-
perature, and tolerates a variety of functionalities.
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Table 1 Hydrosilylation Reaction of Various Alkynes

Entry Alkyne Si Yield 
(%)

Selectivi-
ty (1/2)

1 Ph3Si 55 95/5

2b Ph3Si 95 >99/1

3 Ph3Si 90 97/3

4 Ph3Si 89 97/3

5 Ph3Si 88 97/3

6 Ph3Si 91 97/3

7c Ph2MeSi 82 98/2

8d Ph2MeSi 98 >99/1

9e Ph2MeSi 85 94/6

10 Ph2MeSi 68 >99/1

11e Ph2MeSi 91 95/1

12 Ph2MeSi 100 96/4

13d Ph2MeSi 36 >99/1

14 Ph3Si trace –

a Alkyne (1.2 mmol), silane (1.0 mmol), Pd2(dba)3�CHCl3 (0.005 
mmol), Cy3P (0.02 mmol), room temperature, 1 h.
b 1 min.
c 10 min.
d 3,3-Dimethyl-1-butyne (2.5 mmol) was employed.
e 2 h.
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