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Abstract: An asymmetric version of the Nicholas reaction involv-
ing the use of chiral phosphoramidite ligands has been developed.
Treatment of a cobalt carbonyl complexed propargylic alcohol with
two equivalents of the chiral ligand, followed by reaction with a si-
lyl enol ether in the presence of a Lewis acid, afforded, after decom-
plexation, the desired product in up to 74% ee for the carbon–carbon
bond forming step.
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The Nicholas reaction (Scheme 1) is a versatile transfor-
mation, involving the reaction of a cobalt carbonyl stabi-
lized propargylic cation 1 with different nucleophiles.1

The scope of nucleophiles that can be applied in the
Nicholas reaction is wide, including alcohols, amines, thi-
ols, fluoride, hydride, phosphines, as well as various types
of carbon nucleophiles in the form of enol ethers, elec-
tron-rich aromatics, allyl silanes, allyl stannanes, and tri-
alkyl aluminum reagents.1a Complexation of the precursor
propargylic alcohols or ethers with dicobalt octacarbonyl
proceeds smoothly at room temperature, and the dark red
complex formed is subsequently treated with a Lewis acid
to generate the cation prior to addition of the nucleophile.
Decomplexation is generally effected oxidatively, using
cerium ammonium nitrate or iodine. Recent developments
in this area include a tandem Nicholas–Pauson–Khand se-
quence,2 the use of montmorillonite K-10 to generate the
stabilized cation,3 a solid-phase version of the reaction,4

as well as the synthesis of natural product hybrids,5 and
bioactive polyether structures.6 Recently, related reac-
tions involving the use of rhenium7 or ruthenium8 cata-
lysts have been developed, and successful
enantioselective versions of these reaction have in some
cases been carried out,9 although their full scope has not
yet been investigated. In this communication we report
the successful development of an asymmetric version of
the Nicholas reaction using chiral phosphoramidites as
ligands to cobalt.

Asymmetric versions of the Nicholas reaction have in
general involved the use of chiral nucleophiles10 or chiral
substrates.11 Chirality transfer has also been performed.12

However, to our knowledge the use of racemic propargyl-
ic alcohols in conjunction with chiral ligands coordinated

to cobalt have not been reported for the Nicholas reaction,
and we thus embarked on an investigation into this matter.
Our initial screening of chiral phosphine ligands in the
Nicholas reaction showed that the propargylic cobalt
complexes formed suffered from low reactivity, in agree-
ment with earlier reports by Nicholas13 and Mayr.14 Phos-
phites showed more promise in activating the complex for
nucleophilic attack.12b Although chiral phosphite ligands
have been used in asymmetric reactions,15 we instead opt-
ed for the structurally similar class of phosphoramidite
ligands that have been extensively employed lately.

Chiral phosphoramidites are versatile ligands employed
in a number of asymmetric transformations,16–18 having
the additional advantage that such compounds are facile to
prepare in a parallel format.19 Gimbert and colleagues
have applied phosphoramidite ligands in asymmetric Pau-
son–Khand reactions with promising enantioselectivi-
ties,20 while Buono and co-workers have reported an
asymmetric Co(I)-catalyzed [6+2]-cycloaddition using a
phosphoramidite ligand, also with good results.21 To our
knowledge, these are the only examples of the application
of phosphoramidite ligands in cobalt-catalyzed organic
synthesis. We thus decided to prepare a library of chiral
phosphoramidite ligands for an initial screening in an
asymmetric Nicholas reaction to expand the scope of
these ligands in terms of organocobalt reactions.

For the library of phosphoramidites, (S)-BINOL [(S)-(–)-
1,1¢-bi-2-naphthol] was used as the diol component in all
cases, with a focus on varying the amine moiety. Fourteen
different amines were selected and the corresponding
phosphoramidites were prepared via the chiral chloro-
phosphite of (S)-BINOL, following the procedure report-
ed by Feringa, de Vries and co-workers for ligand
synthesis in a parallel format (Figure 1).22 Twelve of these
phosphoramidite ligands have been reported earlier,23

while 2b and 2c are new.24 The selection of precursor

Scheme 1 The Nicholas reaction
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amines comprised both aliphatic and aromatic structures,
as well as three chiral amines.

Before the full screening of the ligands in the Nicholas re-
action was approached, a preliminary investigation into
the optimal number of ligands on the complex was carried
out, limiting this initial study to two ligands, i.e. the pyr-
rolidine-substituted ligand 2f as well as MorfPhos (2h),
both prepared from (R)-BINOL [(R)-(+)-1,1¢-bi-2-naph-
thol] in this case. A commercially available alkynol, 1-bu-
tyn-3-ol was converted into the corresponding dicobalt
hexacarbonyl complex 325 (Scheme 2). Ligand exchange
was effected by heating complex 3 with one or two equiv-
alents of ligands 2f or 2h in toluene at 50 °C under an ar-
gon atmosphere.26 The intermediate ligand-substituted
complexes were not isolated, but used directly in the
Nicholas reaction. To each reaction flask, at –30 °C, were
added two equivalents of 1-phenyl-1-(trimethylsily-
loxy)ethylene (4) together with 1.5 equivalents of boron
trifluoride etherate.27 The reaction was allowed to warm to
room temperature overnight, the solvent was evaporated
and the residue was treated with a solution of cerium am-
monium nitrate in THF–H2O (9:1) at –10 °C to liberate the
substituted alkyne 5. The enantioselectivity of the reaction
was subsequently determined by chiral HPLC analysis
(see Table 1). The enantiomeric excesses in these initial
reactions were modest but promising for a first attempt,
with two equivalents of ligand (entries 2 and 4) giving bet-
ter results than the corresponding reactions with one
equivalent (entries 1 and 3). One limitation, however, was
that the enantiomers of 5 were not easily separable by
HPLC, and we thus decided to search for another target
molecule for a more reliable test reaction.

Diketone 7 (Scheme 3), prepared in racemic form in a re-
lated project,4b showed good separation of the two enanti-
omers by chiral HPLC and was thus selected as a target for
the screening of ligands in the asymmetric Nicholas reac-
tion. Propargylic alcohol 6, was synthesized via a micro-
wave-assisted Sonogashira reaction from p-iodo-
acetophenone and 3-hydroxy-1-octyne.30

Figure 1 Chiral phosphoramidites used in the asymmetric Nicholas reaction
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Scheme 2 Optimization of the ligand-to-substrate ratio in the asym-
metric Nicholas reaction with 3; in this case, ligands 2f and 2h were
prepared from (R)-BINOL

O

HO

(OC)6Co2

toluene, 50 °C

1. BF3·OEt2, 4

3

5

CH2Cl2, –30 °C to r.t.

OSiMe3

4 =

HO
2f or 2h (1 or 2 equiv)

2. CAN,

THF–H2O (9:1), –10 °C

Co2(CO)6–n(L*)n

Table 1 Results from Initial Nicholas Reactions with 3 (Scheme 2)

Entry Liganda Amount 
(equiv)b

Yield (%) 
of 5c

eed,e

1 2f 1 26 16 (S)

2 2f 2 33 24 (S)

3 2h 1 12 20 (S)

4 2h 2 10 26 (S)

a Prepared from (R)-BINOL.
b Relative to complex 3.
c Overall yield of the isolated product calculated over three steps, 
from complex 3.
d Determined by HPLC analysis using a Daicel Chiralpak AD-H col-
umn (hexane–i-PrOH, 9:1).
e Absolute configuration was determined by oxidative cleavage of the 
alkyne with RuO2–oxone28 to the corresponding carboxylic acid, and 
comparison with the previously reported data for the optical rota-
tion.29
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Complexation with dicobalt octacarbonyl was carried out
in dichloromethane at room temperature for three hours
while protecting the flask from light, followed by purifi-
cation via elution through a short plug of silica to afford
the corresponding cobalt carbonyl complexed alkyne as a
dark red oil. Formation of the phosphoramidite–cobalt
carbonyl–alkyne complexes was effected in a parallel for-
mat in a Radleys carousel31 following the procedure de-
scribed earlier for the test reaction,26 and the Nicholas
reaction was carried out in the same manner as reported
earlier.27 The enantioselectivity was then measured by
HPLC both before the purification and on the compound
isolated after flash chromatography (Table 2).

The use of phosphoramidite ligands prepared from aro-
matic amines, i.e. 2a, 2b, 2c and 2d, in general gave both

low yields and discouraging enantioselectivities. Moyano
and co-workers have shown that aromatic substituents on
a phosphoramidite ligand can act as internal nucleophiles
when coordinated to a cationic propargylic cobalt
alkyne,32 and this could be one explanation for the poor re-
sults in these cases as well as the fact that the opposite
enantiomer was formed when using ligands 2b and 2d.
Ligands formed from secondary aliphatic amines showed
more promise. Ligand 2e, containing a N-methylbenzyl-
amine functionality, produced 8 in 40% ee, while even
better results were obtained with ligands incorporating a
cyclic secondary amine. MorfPhos (2h) and PipPhos (2i)
gave 60% and 64% ee values, respectively, while 70% ee
was obtained for the pyrrolidine-substituted ligand 2f.
Phosphoramidite 2l, incorporating a chiral amine, afford-
ed the product with a respectable ee of 30%, while the dia-
stereomeric ligand 2m produced the same enantiomer of
the product but with a lower ee, indicating a mismatched
situation. This also suggests that the BINOL moiety deter-
mines the stereochemical outcome of the reaction, al-
though the actual structure of the amine (i.e. primary/
secondary, aliphatic/aromatic) is of importance as seen
from the earlier mentioned results. Chiral ligand 2n gave
racemic product in low yield. It may be that the complex
formed in this case was too sterically encumbered to un-
dergo a Nicholas reaction in the presence of a nucleophile.
Ligand 2j, being sterically somewhat less hindered, also
gave a better ee (32%), as did the dibenzylamine ligand 2k
(54%). The yields for the reactions may seem modest;
however, they were calculated over four steps, indicating
average yields of around 80% for each individual step for
the more interesting ligands 2f, 2h and 2i. Although over-
lapping impurities in a few instances interfered with the
determination of the enantiomeric purity of the crude
product, there was little difference in the enantiomeric ex-
cess measured before and after purification, indicating
that a rapid screening of chiral ligands can be effected
without the need of purifying the product.

To expand the scope of the reaction, a preliminary inves-
tigation involving two more carbon nucleophiles, as well
as an alternative substrate, was carried out (Figure 2). 4-
(3,5-Dimethylphenyl)-3-butyn-2-ol (8)30 was subjected to
the same reaction conditions as displayed in Scheme 2,
with the exception that three different nucleophiles were
used in conjunction with the pyrrolidine-substituted phos-
phoramidite ligand 2f, i.e. the best ligand in the earlier ex-
periments.

Treatment of the intermediate ligand-substituted cobalt–
alkyne complex with 3-methoxyanisole afforded the de-

Scheme 3 Screening of phosphoramidite ligands in the asymmetric Nicholas reaction; see Figure 1 for ligand structures L* [prepared from
(S)-BINOL]
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Table 2 Results from the Asymmetric Nicholas Reaction with 
Alkynol 6 (Scheme 3)

Entry Liganda ee, crude 
product (%)b

Yield 
(%) of 7c

ee 
(%)b

1 2a 0 30 0

2 2b n.d.d 9  6e

3 2c n.d.d 6 16

4 2d 8e 11  6e

5 2e 38 33 40

6 2f 74 35 70

7 2g 18 35 16

8 2h 62 44 60

9 2i 68 47 64

10 2j 36 47 32

11 2k 52 14 54

12 2l n.d.d 35 30

13 2m 10 8 8

14 2n n.d.d 7 0

a Prepared from (S)-BINOL.
b Determined by HPLC analysis using a Daicel Chiralpak AD-H col-
umn (hexane–i-PrOH, 9:1).
c Overall yield of the isolated product calculated from propargylic al-
cohol 6.
d It was not possible to determine the ee of the crude product due to 
overlapping impurities.
e Opposite enantiomer in excess.



LETTER Asymmetric Nicholas Reaction Using Chiral Phosphoramidite Ligands 397

Synlett 2008, No. 3, 394–398 © Thieme Stuttgart · New York

sired product 9 in good yield but with a disappointing ee
of 12% (Table 3, entry 1). N-Methylindole likewise gave
a rather low enantioselectivity of 10 (entry 2), albeit with
an excellent overall yield. The reaction of 1-phenyl-1-(tri-
methylsilyloxy)ethylene, i.e. nucleophile 4 from
Scheme 2, was more promising in terms of asymmetric in-
duction, affording product 11 in 66% ee with ligand 2f
(entry 3).

Figure 2 Nucleophiles used in conjunction with alkynol 8

This reaction was also carried out with 2h, i.e. the mor-
pholine-substituted phosphoramidite ligand, which in this
case performed even better than its pyrrolidine counter-
part, with an enantiomeric excess of 74% for the product
(entry 4). Although the overall yields in the reactions in-
volving the more sensitive nucleophile 4 need to be im-
proved, these results show that the methodology is
applicable to other substrates as well.

In summary, we have shown that phosphoramidite ligands
are applicable in the asymmetric Nicholas reaction with
carbon nucleophiles, affording up to 74% ee using a silyl
enol ether nucleophile. Further studies involving several
substrates and also including heteroatom nucleophiles are
currently in progress to investigate the scope of the reac-
tion and to further improve the enantioselectivity and
yields.
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