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The Tamao–Kumada–Fleming oxidation is not only a funda-
mental transformation of organosilicon compounds but also a
method of great importance for the synthesis of alcohols.[1]

This oxidation typically exploits hydrogen peroxide as the
oxidant. On the other hand, oxidative cleavage of silicon–-
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carbon bonds with molecular oxygen has not been well
investigated.[2] We have recently reported a synthesis of
acylsilanes through aerobic oxidation of 1,1-disilylalkylcop-
per compounds.[3] We then envisaged that a silyl hydro-
peroxide 1—generated from a carbon-centered radical and
molecular oxygen[4]—would yield a carbonyl compound
(Scheme 1). If this were the case, this oxidation of a Si�C

bond could be combined with a variety of radical processes.
Herein we wish to report what amounts effectively to the
oxidative cleavage of a Si�C bond with air. A tandem radical
addition–oxidation sequence which converts alkenylsilanes
into ketones is also described.

At the outset of this research, we examined the reaction of
a-silylalkyl iodides 3 with a radical mediator in air
(Scheme 2). The iodide 3a employed can be easily prepared

from vinylsilane 2a in an iodine-atom-transfer radical reac-
tion.[5] To a mixture of iodide 3a, H3PO2,[6] and pyridine in
benzene, a solution of Et3B[7] (3.0 equiv) in hexane was added
in five portions at intervals of 1 h at room temperature. To our
delight, aldehyde 4a was obtained in 68% yield after
purification. The use of 3b or 3c as the iodide also furnished
the corresponding aldehydes in good yields. Phosphinic acid
as the radical chain carrier is a crucial component: tris(tri-
methylsilyl)silane instead of phosphinic acid provided the
reduction product 5a exclusively. The choice of the silyl group
in 3 is also important, and the reaction of a trimethylsilyl
analog of 3a provided aldehyde 4a in only 49% yield along
with 5a in 35% yield.

We next turned our attention toward the synthesis of
ketones from alkenylsilanes. In the preparation of the starting
alkyl iodide 3d[8] through an iodine-atom transfer reaction
with 2-silylpropene 2b, we came across the formation of
methyl ketone 4d as a byproduct (22% yield, Scheme 3).
Obviously, ketone 4d is nothing but the desired product in the

oxidation of 3d in air. Consequently, we then focused on a
tandem radical addition–oxidation reaction with 2-silyl-1-
alkenes. The use of an excess amount of triethylborane
(2.0 equiv) in air afforded methyl ketone 4d as the major
product. After several experiments, we found that water is an
excellent solvent to provide 4d in 80% yield (see Table 1,
entry 1).[9,10] The addition of ammonium chloride is important
as without it, the yield of 4d lowered to 62%, and vinylsilane
2b was recovered in 11%.

Table 1 summarizes the results of the tandem radical
addition–oxidation reactions of Scheme 4. This process can
convert vinylsilanes into a-substituted ketones in one step.[11]
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Scheme 1. Formation of carbonyl compounds from silyl hydroper-
oxides.
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Scheme 2. Aldehyde formation from a-iodosilanes.

Table 1: Synthesis of carbonyl compounds according to Scheme 4.[a]

Entry R1 R2I Product Yield [%]

1 Me (2b) 4d 80

2 Me (2b) 4e 51[b]

3 Ph (2c) 4 f 77

4 Ph (2c) 4g 74

5 Ph (2c) 4h 60

6 Ph (2c) 4 i 40

7 Ph (2c) 4 j 84[b]

8 Ph (2c) C6F13I 4k 81

9 CO2Me (2d) 4 l 61

10
PhMe2Si
(2e)

C6F13I

4m 64[b,c]

4n 58[d]

[a] Reaction conditions: alkenylsilane 2 (0.5 mmol), iodide (0.75 mmol),
H2O (5 mL), NH4Cl (15 mmol), Et3B (5F0.2 mmol), air atmosphere,
room temperature (RT), 5 h. [b] Iodide (1.5 mmol) and Et3B
(5F0.4 mmol) were employed. [c] Yield determined by NMR spectro-
scopy with dibenzyl ether as the internal standard. [d] Yield after
purification over a silica gel column.
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Scheme 3. Formation of a methyl ketone.
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One can hence regard vinylsilanes as a 2-oxoalkyl-equivalent
radical acceptor. Several characteristics of this process are
noteworthy: 1) The reaction of a-silylstyrene 2c also afforded
the desired ketones in good yields. 2) The reaction can
employ iodo ketones as a radical source (entry 7). However,
concurrent reduction of the iodo ketone via a water-unstable
boron enolate occurred,[12] and the use of excess iodo ketone
(3.0 equiv) was required. 3) The reaction allows efficient
introduction of a perfluoroalkyl group at the a position of
ketones (entries 8 and 10). 4) Direct oxidation of the iodide
can lower the yield of ketone (entry 6; the undesired
oxidation product is 2-hydroxypropionate).[4b] 5) Acylsilanes
can be prepared from 1,1-disilylethene 2e. The product 4 m
was converted into a,b-unsaturated acylsilane 4n during
purification over silica gel (entry 10). 6) In all cases, silanol
was obtained as a byproduct.

We propose the reaction pathway for the sequential
radical addition–oxidation reaction as illustrated in Scheme 5.
Addition of a radical 6 to alkenylsilane 2 provides an a-silyl
radical 7, which then reacts with oxygen to afford peroxy

radical 8. The reaction of radical 8 with Et3B furnishes
peroxyborane 9. Hydroperoxide 10, derived from the perox-
yborane by hydrolysis, is eventually converted into the
carbonyl product 4 through migration of the silyl group to
the internal oxygen atom.[13] The ethyl radical which results
from reaction 8!9 regenerates an alkyl radical from R2I.

In conclusion, we have achieved the synthesis of alde-
hydes and ketones from alkenylsilanes under radical con-
ditions with air as the oxidant. A tandem intermolecular
radical addition–oxidation sequence can convert vinylsilanes

into ketones in good yields. This process demonstrates novel
utility of vinylsilanes in organic synthesis. Further research on
the oxidation of organosilicon compounds with molecular
oxygen is currently under way in our laboratory.
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Scheme 4. Synthesis of carbonyl compounds from alkenylsilanes 2 as
2-oxoalkyl-equivalent radical acceptors. 2b,c,d : R3Si=Ph2MeSi, 2e :
R3Si=Me2PhSi. For details see Table 1.
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Scheme 5. Proposed reaction pathway for the sequential radical addi-
tion–oxidation reaction studied.
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