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Palladium-Catalyzed Alkynylthiolation of Alkynes with
Triisopropylsilylethynyl Sulfide

Masayuki Iwasaki,[a, b] Daishi Fujino,[a, b] Tatsuya Wada,[b] Azusa Kondoh,[b]

Hideki Yorimitsu,*[a, b] and Koichiro Oshima*[b]

Addition of a carbon–sulfur s bond to alkynes, carbothio-
lation of alkynes, under transition metal catalysis is among
the most useful methods for the synthesis of organosulfur
compounds as the reaction can directly provide various al-
kenyl sulfides of some complexity (Scheme 1).[1] Recently,

several groups have reported various types of carbothiola-
tion, such as arylthiolation,[2] alkenylthiolation,[3] allylthiola-
tion,[4] and acylthiolation.[5,6] However, the addition of al-
kynyl sulfides to alkynes has not been well documented[7,8]

although alkynylthiolation is expected to be a straightfor-
ward route to 1-thio-1,3-enynes, which are potentially valua-
ble and versatile yet difficult-to-synthesize intermediates.

Very recently, our group and Jiang�s group have inde-
pendently reported haloalkynylation reactions of alkynes
with 1-halo-1-alkyne under palladium catalysis to obtain
(Z)-1-halo-1,3-enyne.[9] Along this line, we report herein ad-
dition of silyl-substituted alkynyl sulfides to alkynes under
palladium catalysis. This new addition reaction has a broad-
er scope of acceptor alkynes, including aryl-, alkenyl-, and
alkyl-substituted terminal alkynes and internal alkynes. The
resulting alkenyl sulfides are expected to undergo reactions
characteristic of organosulfur compounds, thus providing
more complex skeletons such as multisubstituted olefins and
thiophenes.[1,10]

Treatment of phenylacetylene (1 a) with triisopropylsilyle-
thynyl phenyl sulfide (2 a, 1.2 equiv) in the presence of cata-
lytic amounts of [Pd2ACHTUNGTRENNUNG(dba)3] (dba= dibenzylideneacetone)
and triphenylphosphine in toluene at 110 8C for 3 hours af-
forded the corresponding (Z)-1-phenylthio-1,3-enyne 3 aa in
63 % yield (Table 1, entry 1). The reaction proceeded with
perfect regio- and stereoselectivities, which were clarified by
X-ray crystallographic analysis (vide infra). Polar solvents,
such as N,N-dimethylformamide (DMF), decreased the
yields, and most of the starting materials were recovered un-
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Table 1. Palladium-catalyzed addition of alkynyl sulfides to phenylacety-
lene (1 a).[a]

Entry 2 R 3 Yield [%]

1 2a SiiPr3 3aa 63
2 2b SiEt3 3ab 27
3 2c SitBuMe2 3ac 22
4 2d Mes 3ad 57
5 2e tBu 3ae 27
6 2 f Ph 3af <10
7 2g nHex 3ag <10

[a] Conditions: 1a (0.50 mmol), 2 (0.60 mmol), [Pd2 ACHTUNGTRENNUNG(dba)3]
(0.0125 mmol), PPh3 (0.050 mmol), toluene (2 mL).

Scheme 1. Carbothiolation of alkynes by cleavage of carbon–sulfur bond.
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changed. The molar ratio of palladium/phosphine had a sig-
nificant influence on yield, and a ratio of 1:2 was the best.[11]

[Pd2ACHTUNGTRENNUNG(dba)3] was the best precursor, and palladium(II) com-
plexes, such as PdACHTUNGTRENNUNG(OAc)2, were much less active.

In analogy with our previous report,[9a] the triisopropylsil-
yl group of 2 a was essential to attain satisfactory yields. The
reactions of the triethylsilyl analog 2 b and the tert-butyldi-
methylsilyl analog 2 c furnished the corresponding products
3 ab and 3 ac in lower yields (Table 1, entries 2 and 3). We
assume that the fairly large triisopropylsilyl group would
play an important role to sterically prevent the C�C triple
bond of 2 from undergoing undesired side reactions. Similar
trends were observed in the reactions of alkyl- and aryl-sub-
stituted 2 (2 d vs. 2 f and 2 e vs. 2 g). In particular, the mesi-
tyl-substituted alkynyl sulfide 2 d was converted into the cor-
responding adduct in good yield (Table 1, entry 4). The me-
sityl group would more effectively shield the adjacent triple
bond than the tert-butyl, phenyl, and hexyl groups. Triiso-
propylsilyl protection is necessary for 2 as the silyl group
can be subjected to a wide range of useful transformations,
whereas the mesityl group is virtually useless.

A variety of terminal alkynes efficiently underwent the
palladium-catalyzed addition reaction (Table 2). The elec-
tron-deficient arylacetylenes underwent the addition to yield
product 3 ba in 56 % yield (Table 2, entry 1). Exceptionally,
tricyclohexylphosphine (PCy3) proved to be the best ligand
for the reactions of phenylacetylene 1 a and para-trifluoro-
methylphenylacetylene 1 b (Table 2, entries 2 and 3).[11] The
reaction of para-chlorophenylacetylene 1 c provided the cor-
responding adduct in good yield, thus leaving the chloro
moiety intact (Table 2, entry 4). The acceptor acetylenes are
not limited to arylacetylenes. 1,3-Enyne 1 e also underwent
the reaction to yield the corresponding 3,5-dien-1-yne 3 ea
(Table 2, entry 6). Although aliphatic alkynes such as 1-
octyne (1 f) participated in this reaction (Table 2, entry 7),
tert-butylacetylene (1 g) was less reactive probably owing to
its steric bulkiness (Table 2, entry 8). Notably, an unprotect-

ed hydroxy group was tolerated under the reaction condi-
tions (Table 2, entry 9).

A proposed mechanism for the palladium-catalyzed addi-
tion of 2 a to alkynes 1 a is illustrated in Scheme 2. Oxidative
addition of 2 a onto zero-valent palladium would afford al-
kynylpalladium phenylthiolate A by selective cleavage of

the C(sp)�S bond.[12] The selective cleavage would result
from the favorable coordination of the alkyne moiety of 2 a
to the palladium center prior to the oxidative addition.[13]

Subsequent regio- and stereoselective insertion of alkyne 1 a
into the Pd�S bond would occur to yield alkenylalkynylpal-
ladium B. B would be selectively formed by the migration
of the phenylthio group onto the alkyne with the triphenyl-
phosphine-coordinated bulkier palladium bound at the steri-
cally less hindered terminal carbon. Reported stoichiometric
investigations of the insertion of alkynes into a sulfur–metal
bond[14] are suggestive of this mechanism although the path-
way through alkynylpalladation of alkyne instead of the thi-
opalladation would be also conceivable.[15] Finally, reductive
elimination proceeds to furnish the alkynylthiolation prod-
uct and generates the initial palladium complex.

Attempted alkynylthiolation of an internal alkyne, instead
of terminal alkynes, resulted in very low yield [Scheme 3,
Eq. (1)]. The sterically hindered C�C triple bond of an in-
ternal alkyne would hamper the insertion step. In order to
accelerate the slow, presumably rate-determining, bimolecu-
lar elementary reaction, the same reaction was investigated
at higher temperatures in higher concentrations of alkyne.
After extensive screening of reaction conditions, we were
glad to find that treatment of 2 a with 4-octyne (1 i, 8 equiv)
at 130 8C for 24 hours without using any solvents afforded
the corresponding (Z)-1-phenylthio-1,3-enyne 3 ia in 64 %
yield [Scheme 3, Eq. (2)]. When less volatile 6-dodecyne
(1 j, 4 equiv) was used at 150 8C, the target adduct 3 ja was
obtained in a higher yield of 73 %. It is of note that the reac-

Table 2. Palladium-catalyzed addition of triisopropylsilylethynyl phenyl
sulfide (2a) to terminal alkynes.[a]

Entry 1 R 3 Yield [%]

1 1 b p-CF3-C6H4 3ba 56
2[b] 1 a Ph 3aa 88
3[b] 1 b p-CF3-C6H4 3ba 89
4 1 c p-Cl-C6H4 3ca 62
5 1 d 2-Naphthyl 3da 81
6 1 e CH2=CMe 3ea 69
7 1 f nHex 3 fa 88
8 1 g tBu 3ga 41
9 1 h HO ACHTUNGTRENNUNG(CH2)9 3ha 84

[a] Conditions: 1 (0.50 mmol), 2 a (0.60 mmol), [Pd2 ACHTUNGTRENNUNG(dba)3]
(0.0125 mmol), PPh3 (0.050 mmol), toluene (2 mL). [b] PCy3

(0.050 mmol) was used.

Scheme 2. A proposed mechanism.
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tion of terminal alkynes under the solvent-free conditions
resulted in the formation of oligomers of starting alkynes.

Vinylic sulfur compounds 3 are useful synthetic intermedi-
ates, and Scheme 4 demonstrates an example of the utility
that we have developed. After monoxidation of 3 fa with

meta-chloroperoxybenzoic acid (mCPBA), a Pummerer-type
reaction[16] of the alkenyl sulfoxide 4 was performed by
using allylic silane. Treatment of 4 with methallyltrimethylsi-
lane, trifluoromethanesulfonic anhydride, and potassium car-
bonate in nitromethane afforded allylated product 5 in good
yield. Notably, the reaction proceeded largely with inversion
of configuration and the formation of the E isomer predomi-
nated, which was determined by NOE analysis.[17]

Scheme 5 rationalizes the stereoselectivity of the reaction.
Treatment of 4 with trifluoromethanesulfonic anhydride
should give sulfonium salt C.[16,18] Methallylsilane would
then attack the cationic sulfur along with liberation of trime-
thylsilyl triflate to afford sulfonium salt D.[18c,19] Sulfonium
salt D would then undergo [3,3]-sigmatropic rearrangement
via a chairlike transition state, followed by deprotonation, to
afford 5.[19c,20] During the deprotonation from intermediate
E, two possible conformations, E1 and E2, should be consid-
ered from a stereoelectronic viewpoint, in which the cleav-
ing carbon–hydrogen bond and the carbon–sulfur double
bond are perpendicular. The steric repulsion between the
hexyl group and methallyl group in E1 would be larger than

that between the hexyl and the alkynyl groups in E2. The
following deprotonation would occur preferably from E2 to
yield the E isomer selectively. The methallylation represents
the first general intermolecular vinylogous Pummerer reac-
tion of alkenyl sulfoxide,[21,22] which is a useful method for
constructing highly substituted alkenes.

As the stereochemistry of product 3 was ambiguously de-
termined by the NOE analysis of 3 fa,[17] we tried to confirm
the precise configuration by X-ray crystallographic analysis.
First, desilylation of product 3 fa followed by Sonogashira
coupling afforded 6 in good yield [Scheme 6, Eq. (3)]. Un-
fortunately, attempts to obtain single crystals of 6[23] resulted
in failure. Next, the desilylated product of 3 da was subject-
ed to a cycloaddition reaction with aryl azide[24] to give tria-
zole 7 [Scheme 6, Eq. (4)]. Triazole 7 eventually formed
crystals for crystallographic analysis,[25] and these crystals

Scheme 3. Palladium-catalyzed addition of triisopropylsilylethynyl phenyl
sulfide (2a) to internal alkynes.

Scheme 4. Transformations of 3 fa.

Scheme 5. Mechanism of allylation.

Scheme 6. Reactions performed for unambiguous determination of the
configuration of 3.
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provide clear evidence of the syn-alkynylthiolation process
(Figure 1).

We have developed the syn-addition reaction of the
carbon–sulfur bond of alkynyl sulfide to alkynes under pal-
ladium catalysis. The products, (Z)-1-thio-1,3-enynes, are
demonstrated to be useful building blocks for the synthesis
of polysubstituted 1,3-enynes, especially by monoxidation
followed by an unusual allylation reaction with allylic silane.
Studies on the application of this reaction to the synthesis of
complex molecules such as multisubstituted thiophenes[6] are
under investigation.

Experimental Section

Typical procedure for palladium-catalyzed addition of silyl-substituted
alkynyl sulfides to terminal alkynesACHTUNGTRENNUNG[Pd2 ACHTUNGTRENNUNG(dba)3] (11 mg, 0.0125 mmol) was placed in a 20 mL reaction flask
under nitrogen. Tricyclohexylphosphine (1.0 m in toluene, 50 mL,
0.050 mmol) and toluene (1.0 mL) were added, and the mixture was
stirred for 15 min. Phenylacetylene (1 a, 51 mg, 0.50 mmol), triisopropylsi-
lylethynyl phenyl sulfide (2 a, 170 mg, 0.60 mmol), and toluene (1.0 mL)
were sequentially added, and the resulting mixture was heated at 110 8C
for 3 h. After the reaction mixture was cooled to room temperature, the
reaction was quenched with water. The product was extracted with
hexane (10 mL) three times. The combined organic layers were dried
over anhydrous sodium sulfate and concentrated in vacuo. Purification
on silica gel (eluted with hexane) provided 3aa (170 mg, 0.44 mmol) in
88% yield as a yellow oil.

Typical procedure for palladium-catalyzed addition of silyl-substituted
alkynyl sulfides to internal alkynesACHTUNGTRENNUNG[Pd2 ACHTUNGTRENNUNG(dba)3] (23 mg, 0.025 mmol) and tris(p-trifluoromethylphenyl)phos-
phine (47 mg, 0.10 mmol) were placed in a 20 mL reaction flask under ni-
trogen. 6-Dodecyne (1j, 83 mg, 0.50 mmol) and triisopropylsilylethynyl
phenyl sulfide (2a, 580 mg, 2.0 mmol) were sequentially added, and the
resulting mixture was heated at 150 8C for 24 h. After cooling, purifica-
tion on silica gel (eluted with hexane) provided 3ja (170 mg, 0.37 mmol)
in 73 % yield as an oil.
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