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Reaction of a phosphinobenzylsilane compound with ruthe-

nium complexes leads to C–H and/or Si–H activation. The new

complex Ru{g2-H–SiMe2CH(o-C6H4)PPh2}2 (5) was isolated

and X-ray, NMR and DFT studies reveal that 5 displays two

agostic Si–H interactions and two carbon-metallated bonds.

Significant advances appeared concomitantly in the early 1980s in

the general field of bond activation. (i) Bergman and Graham

reported the first examples of intermolecular addition of alkane

C–H bonds;1 (ii) Brookhart and Green developed the concept of

agostic interactions;2 (iii) Kubas et al. established the unambiguous

existence of a s-dihydrogen complex.3 Since these findings, the

development of new systems inducing E–H bond activation (E =

H, C, Si …) has witnessed tremendous growth.4,5 Understanding

E–H bond activation remains a prerequisite for progress in the

field if one wants to achieve selective transformations. Moreover,

tandem bond activation such as C–H/Si–H activation could offer

unique properties in catalysis.6,7 As part of our ongoing program

on E–H bond activation,8 we decided to explore the coordination

of phosphinosilanes toward ruthenium complexes. We reasoned

that in ruthenium chemistry, these compounds could act as

bidentate hemilabile ligands through P and agostic Si–H

coordination.9,10 Furthermore, among the several strategies used

to activate C–H bonds, chelating assistance by the use of substrates

bearing directing groups (e.g. ketones, nitriles etc.) to promote

cyclometallation is an attractive method.11 In this contribution, we

describe C–H activation derived from the reactions of RuH2(g
2-

H2)2(PCy3)2 (1) and Ru(COD)(COT) (4) towards the potentially

chelating phosphinobenzylsilane ligand Ph2P(o-C6H4)CH2SiMe2H

(2).

Complex 1 reacts with 2 equiv. of 2 affording RuH2{g
2-H–

SiMe2CH2(o-C6H4)PPh2}2 (3) as the main product (Scheme 1).

The reaction results from the formal substitution of the two

dihydrogen and the two tricyclohexylphosphine ligands in 1 by

two phosphinobenzylsilane ligands, with the Si–H bonds bound to

Ru in an agostic fashion. At room temperature, the 1H NMR

spectrum of 3 displays one broad signal in the hydride region at

27.8 ppm. Decoalescence is observed at 273 K and two broad

signals in a 1 : 1 ratio can be seen at 25.2 ppm (v1/2 = 40 Hz) and

210.4 ppm (AA9XX9 pattern, v1/2 = 94 Hz with the two main

lines separated by D = 30 Hz) at the low temperature limit (193 K).

The observed decoalescence is attributable to the Si–H/Ru–H

exchange and characterized by a DG{ of 48.2 kJ mol21, a value

within the range of those previously reported for the exchange

between two types of hydrides (M–(g2-Si–H) and M–H).12,13 The
29Si NMR spectrum shows a singlet at d = +8.3 ppm with small

JSi–H coupling constants of 28 and 15 Hz for the agostic and

classical hydrides, respectively.14 The 31P{1H} NMR spectra at all

temperatures show only one signal at d = 39.2 ppm in agreement

with two equivalent phosphines. As expected, 3 shows similar

spectroscopic properties to those some of us previously reported

for a series of bis(silane) compounds of general formula

RuH2{(g2-H–SiMe2)2X}(PCy3)2 (X = C6H4, (CH2)2, (CH2)3,

OSiMe2O).15 These data lead us to propose the structure shown

in Scheme 1 with a cis disposition of the phosphine ligands. This is

also consistent with DFT calculations performed at the B3PW91

level on the model RuH2{g
2-H–SiMe2CH2(o-C6H4)PH2}2. Two
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Scheme 1 Reactivity of the phosphinobenzylsilane compound 2 with

ruthenium precursors. Synthesis of the bis(carbometallated) complex 5.
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isomers (see ESI{) with the phosphorus in a trans (3a) or cis (3b)

disposition were optimized. 3a being the highest in energy

(+33.6 kJ mol21).

More interestingly, when the addition of 2 was performed

on Ru(COD)(COT) (4), the new species Ru{g2-H–SiMe2CH(o-

C6H4)PPh2}2 (5) was detected as the sole product by 1H and
31P{1H} NMR spectroscopy, and isolated in 92% yield (Scheme 1).

Its formulation as a bis(cyclometallated) species, resulting from

C–H activation of the methylene groups of the starting ligand 2,

was ascertained from NMR, X-ray{ and consistent with DFT

data. The molecular structure of 5 is shown in Fig. 1. The

geometry around the ruthenium centre is a bicapped pseudo-

octahedron with Si atoms capping and a cis disposition of the

other heavy atoms. Two modified phosphinobenzylsilane ligands

coordinate to the metal each through a phosphorus atom, an

agostic Si–H bond and a carbon atom resulting from C–H

activation of the methylene group of the starting ligand. The Si–H

bond lengths of ca. 1.70 s, as determined from X-ray data and

consistent with B3PW91 calculations on the model RuH2{g
2-H–

SiMe2CH(o-C6H4)PH2}2 (5b),16 are typical of g2-H–Si bonds. The

metallated Ru–C bond lengths of ca. 2.24 s are characteristic of

Ru–C single bonds. Multinuclear NMR data highlight the unusual

coordination of the ligand. In particular, the two equivalent

agostic Si–H hydrides resonate as one triplet at 29.8 ppm (JP–H =

9 Hz) with satellites due to coupling with silicon (JSi–H = 67 Hz).

The metallated C–H proton resonates as a broad singlet at

2.2 ppm, whereas the Ru–C resonance appears shielded at

24.8 ppm (JC–H = 141 Hz) in the 13C NMR spectrum. One
31P{1H} NMR singlet is observed at 56.9 ppm at all accessible

temperatures.17

Complex 5 is also obtained quantitatively upon dihydrogen loss

from solutions of 3. Moreover, even under a dihydrogen

atmosphere, THF, benzene or toluene solutions of 3 are not

stable over a period of days and 5 is formed presumably via the

mixed complex RuH{g2-H–SiMe2CH2(o-C6H4)PPh2}{g2-H–

SiMe2CH(o-C6H4)PPh2} (6) as detected spectroscopically.

Independently, 6 can also be obtained as the major product from

the reaction of 4 with 2 equiv of 2 under 3 bar of dihydrogen for

two hours. The main NMR features of complex 6 are two 29Si

NMR signals at d = 11 ppm and at d = 213 ppm for the non-

metallated and the carbometallated ligands respectively, and two
31P{1H} NMR doublets (d 56.5 and 42.7 ppm, 2JP–P 21 Hz). The

three hydride resonances appear as a broad signal at d = 26.0 ppm

(JSi–H = 76 Hz), a pseudo-triplet at 28.0 ppm (JP–H = 21 and

27 Hz) and a doublet of doublets at 29.4 ppm (JP–H = 24 Hz and

54 Hz). The JSi–H value is in agreement with the presence of at least

one agostic Si–H bond and a SISHA interaction.5f The proposed

structure is consistent with the ground-state structure of 6

computed at the DFT/B3PW91 level (see ESI{).

Agostic C–H interactions preluding C–H activation are well

known,4,18 and Berry et al. have described tandem b-C–H

activation/Si–H elimination reactions.6 We show here that the

bis(agostic) Si–H complex 3, displaying rare high order e-agostic

Si–H interactions (to the best of our knowledge no precedent

higher than d-agostic is known) leads finally to 5, with two

b-agostic interactions as a result of C–H activations. The increased

acidity of the methylene groups of the ligand in complex 3 coupled

with the presence of agostic Si–H bonds, which can easily

decoordinate, induce a stepwise H2-loss process resulting ulti-

mately in the formation of the stable bis(carbometallated) complex

5. Whilst C–H activation occurring a to a heteroatom could be

expected,4 it is worth noting that in our system such a reaction

proceeds with final preservation of the agostic Si–H bonds in 5 and

6. A facile dissociation–recoordination pathway could end in the

formation of the carbometallated species whilst reforming the

agostic Si–H bonds in the final stable products. Although no

conclusive mechanistic evidence could be found, the agostic Si–H

interactions favour in some way the C–H activation process.
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