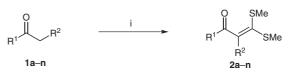
Regioselective Synthesis of Functionalized 3-(Methylthio)phenols by the First Formal [3+3] Cyclocondensations of 1,3-Bis(trimethylsilyloxy)-1,3-butadienes with 1,1-Bis(methylthio)-1-en-3-ones

Mathias Lubbe,^a Renske Klassen,^a Tiana Trabhardt,^a Alexander Villinger,^a Peter Langer^{*a,b}

^a Institut f
ür Chemie, Universit
ät Rostock, Albert Einstein Str. 3a, 18059 Rostock, Germany E-mail: peter.langer@uni-rostock.de

^b Leibniz-Institut für Katalyse an der Universität Rostock e.V., Albert Einstein Str. 29a, 18059 Rostock, Germany *Received 21 April 2008*


Abstract: The [3+3] cyclocondensation of 1,3-bis(silyl enol ethers) with 1,1-bis(methylthio)-1-en-3-ones results in the regioselective formation of 3-(methylthio)phenols. The products represent useful synthetic building blocks, which are not readily available by other methods.

Key words: arenes, cyclizations, regioselectivity, silyl enol ethers

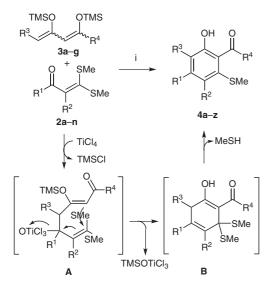
Functionalized methylthio-substituted arenes, such as 2acyl-3-(methylthio)phenols, are of considerable importance as building blocks for the synthesis of pharmaceuticals and fine chemicals. The methylthio group of these compounds has been oxidized to sulfoxides¹ and sulfones.² Other synthetic transformations include Grignard reactions³ and reductions with LiAlH₄.⁴ 2-(Methylthio)benzoates have been transformed into thioindoxyls, 2-alkylidenebenzo[b]thiophen-3-ones (thioaurones), and benzo[b]thiophenes. These transformations rely on the deprotonation of the methylthio group and subsequent cyclization by attack of the carbanion onto a neighboring ester or amide group.^{5,6} 2-(Methylthio)benzoates have been employed also as starting materials for the synthesis of benzo[d]isothiazoles,⁷ 3H-benzothiazol-2-ones,⁸ and 2-(tert-butyl)-1,2-benzothiazol-3(2H)-ones.⁹ A 4-oxo-1,4dihydro-quinoline-3-carboxylate has been prepared by intramolecular nucleophilic replacement of the thiomethyl group, located at a benzene moiety, by an amino group.¹⁰ Thiochromen-4-ones have been prepared by cleavage of the thiomethyl group and subsequent attack of the sulfur atom onto an ynone.¹¹ 2-Acyl-3-(methylthio)phenols have been prepared by Reformatzky reaction of ethyl bromoacetate with 1,1-bis(methylthio)-1-en-3-ones,¹² based on the directed ortho metalation (DoM) using n-BuLi,¹³ by n-BuLi-mediated reaction of carbon dioxide with 1-methoxy-3-(methylthio)benzene,¹⁴ and by [5+1] annulations of nitro compounds.15

Chan and coworkers developed¹⁶ a convenient synthesis of salicylates by cyclocondensation of 1,3-bis(silyl enol ethers)¹⁷ with 3-silyloxy-2-en-1-ones. In recent years, we have extended the scope of this chemistry and studied its application to the synthesis of a variety of functionalized

SYNLETT 2008, No. 15, pp 2331–2333 Advanced online publication: 15.07.2008 DOI: 10.1055/s-2008-1077977; Art ID: D12608ST © Georg Thieme Verlag Stuttgart · New York

Scheme 1 Synthesis of 1,1-bis(methylthio)-1-en-3-ones 2a-n. *Reagents and conditions*: (i) 1. THF, KOt-Bu, 15 min, 20 °C; 2. THF, CS₂, MeI, 20 °C, 10 h.

arenes.¹⁸ For example, we have reported formal [3+3] cyclocondensations of 1,3-bis(silyl enol ethers) with 1,1,3,3-tetraalkoxypropanes.¹⁹ 3-Alkoxy-1-aryl-2-en-1ones and 3-alkoxy-1-trifluoromethyl-2-en-1-ones have also been successfully applied in [3+3] cyclocondensations with 1,3-bis(silyl enol ethers).²⁰ In most reactions developed so far, the products - functionalized phenols contain no functional group located at carbon atoms C-3 and C-5. This is a severe limitation to this methodology, since most naturally occurring phenols do contain such a functional group, since they are often derived from polyketides. Recently, we reported a regioselective synthesis of functionalized resorcins by cyclization of 1,3bis(trimethylsilyloxy)-1,3-butadienes with 3,3-dimethoxypentanoyl chloride.²¹ Herein, we report a new and convenient synthesis of 3-(methylthio)phenols by what are, to the best of our knowledge, the first cyclocondensations of 1,3-bis(silyl enol ethers) with 1,1-bis(methylthio)-1-en-3-ones. Noteworthy, the functionalized 3-(methylthio)phenols prepared are not readily available by other methods.


The required starting materials, 1,1-bis(methylthio)-1-en-3-ones **2a–n**, were prepared, following a known procedure,²² by base-mediated reaction of ketones **1a–n** with carbon disulfide and methyl iodide (Scheme 1, Table 1).

The TiCl₄-mediated cyclocondensation of 1,1-bis(methylthio)-1-en-3-ones **2a–n** with 1,3-bis(silyl enol ethers) **3a–g** afforded the 3-(methylthiophenols) **4a–z** in 37–90% yield (Scheme 2, Table 2).²³ The best yields were obtained for reactions of open-chain, alkyl-substituted 1,1bis(methylthio)-1-en-3-ones **2a–e** with 1,3-bis(silyl enol ethers) **3b–d** derived from unsubstituted alkyl acetoacetates. The yields slightly dropped for the (less-reactive) acetylacetone-derived diene **3e**. The yields also dropped for dienes **3a,f,g** containing a terminal substituent. The yields of cyclic and aryl-substituted 1,1-bis(methylthio)-

Table 1 Synthesis of 2a-n

2	\mathbb{R}^1	\mathbb{R}^2	Yield of $2 (\%)^a$
2a	Me	Н	70
2b	Et	Me	46
2c	<i>n</i> -Pr	Me	50
2d	Me	Et	50
2e	Me	Me	70
2f	<i>t</i> -Bu	Н	61
2g	-(CH	(₂) ₄ -	62
2h	-(CH	2)5-	76
2i	-(CH	$(2)_{6}$ -	87
2k	Ph	Н	61
21	$4-ClC_6H_4$	Н	83
2m	$4-FC_6H_4$	Н	85
2n	$4-FC_6H_4$	Cl	70

^a Yields of isolated products.

Scheme 2 Synthesis of 3-(methylthio)phenols 4a-z. Reagents and conditions: (i) 1. TiCl₄, -78 °C to 20 °C, 14 h; 2. HCl (10%).

1-en-3-ones (**2g–i** and **2k–n**) were lower than those of open-chain, alkyl-substituted derivatives (except for **4y** which was isolated in 88% yield). The structures of the products were elucidated by spectroscopic methods (NOESY, HMQC, HMBC). The structure of **4m** was independently confirmed by X-ray crystal structure analysis (Figure 1).²⁴

The formation of the products can be explained by $TiCl_4$ mediated attack of the terminal carbon atom of **3** onto the carbonyl group of **2** (intermediate **A**), cyclization by S_N' reaction (intermediate **B**), and subsequent aromatization

2	3	4	\mathbf{R}^1	\mathbb{R}^2	R ³	R^4	Yield of 4 (%) ^a
2a	3a	4a	Me	Н	Me	OMe	65
2 b	3b	4b	Et	Me	Н	OEt	89
2b	3c	4c	Et	Me	Н	OMe	90
2c	3c	4d	<i>n</i> -Pr	Me	Н	OMe	80
2c	3d	4e	<i>n</i> -Pr	Me	Н	O(CH ₂) ₂ OMe	80
2d	3b	4f	Me	Et	Н	OEt	81
2d	3d	4g	Me	Et	Н	O(CH ₂) ₂ OMe	76
2e	3e	4h	Me	Me	Н	Me	70
2e	3c	4i	Me	Me	Н	OMe	82
2f	3e	4k	<i>t</i> -Bu	Н	Н	Me	50
2g	3d	41	-(CH ₂) ₄ -		Н	O(CH ₂) ₂ OMe	40
2g	3b	4m	-(CH ₂) ₄ -		Н	OEt	55
2h	3b	4n	-(CH ₂) ₅ -		Н	OEt	70
2h	3c	40	-(CH ₂) ₅ -		Н	OMe	62
2i	3b	4p	-(CH ₂) ₆ -		Н	OEt	61
2i	3e	4q	-(CH ₂) ₆ -		Н	Me	50
2k	3c	4r	Ph	Η	Н	OMe	60
21	3c	4s	$4-ClC_6H_4$	Η	Н	OMe	45
21	3f	4t	$4-ClC_6H_4$	Η	OMe	OMe	37
21	3b	4u	$4-ClC_6H_4$	Н	Н	OEt	50
2m	3c	4v	$4-FC_6H_4$	Н	Н	OMe	76
2m	3b	4w	$4-FC_6H_4$	Н	Н	OEt	62

Table 2 Synthesis of 3-(Methylthio)phenols 4a-z

^a Yields of isolated products.

4x

4y

4z

 $4 - FC_6H_4$

 $4-FC_6H_4$

 $4 - FC_6H_4$

Cl

Cl

Cl

Me

Η

Et

OMe

OMe

OEt

2n

2n

2n

3a

3c

3g

by extrusion of methylthiol (Scheme 2). Noteworthy, the regioselectivity (initial 1,2-addition) is opposite to the one observed for cyclocondensations of 1,3-bis(silyl enol ethers) with 3-alkoxy- and 3-silyloxy-2en-1-ones (initial 1,4-addition).¹⁸

In conclusion, we reported a convenient synthesis of functionalized 3-(methylthio)phenols by the first [3+3] cyclocondensations of 1,3-bis(silyl enol ethers) with 1,1bis(methylthio)-1-en-3-ones. The products represent useful synthetic building blocks, which are not readily available by other methods.

62

88

63

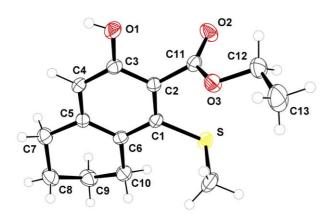


Figure 1 Crystal structure of 4m

Acknowledgment

Financial support by the State of Mecklenburg-Vorpommern is gratefully acknowledged.

References and Notes

- Campiani, G.; Nacci, V.; Bechelli, S.; Ciani, S. M.; Garofalo, A.; Fiorini, I.; Wikström, H.; de Boer, P.; Liao, Y.; Tepper, P. G.; Cagnotto, A.; Mennini, T. J. Med. Chem. 1998, 41, 3763.
- (2) Cabiddu, M. G.; Cabiddu, S.; Cadoni, E.; Demontis, S.; Fattuoni, C.; Melis, S. *Tetrahedron* **2002**, *58*, 4529.
- (3) Ritchie, C. D.; Hofelich, T. C. J. Am. Chem. Soc. 1980, 102, 7039.
- (4) Ohkata, K.; Takee, K.; Akiba, K.-y. Bull. Chem. Soc. Jpn. 1985, 58, 1946.
- (5) Cabiddu, M. G.; Cabiddu, S.; Cadoni, E.; Demontis, S.; Fattuoni, C.; Melis, S.; Usai, M. *Synthesis* **2002**, 875.
- (6) (a) Mukherjee, C.; Kamila, S.; De, A. *Tetrahedron* 2003, *59*, 4767. (b) Mukherjee, C.; De, A. *Synlett* 2002, 325. (c) Kamila, S.; Mukherjee, C.; De, A. *Synlett* 2003, 1479. (d) Pradhan, T. K.; De, A. *Tetrahedron Lett.* 2005, *46*, 1493.
 (7) When D. J. Hand, and J. J. 1970. 15, 065.
- (7) Weber, R. J. Heterocycl. Chem. 1978, 15, 865.
- (8) Dhareshwar, G. P.; Chhaya, P. N.; Hosangadi, B. D. Indian J. Chem., Sect. B: Org. Chem. Incl. Med. Chem. 1980, 19, 831.
- (9) Uchida, Y.; Kozuka, S. Bull. Chem. Soc. Jpn. **1982**, 55, 1183.
- (10) Grohe, K.; Heitzer, H. Liebigs Ann. Chem. 1987, 29.
- (11) (a) Luxen, A. J.; Christiaens, L. E. E.; Renson, M. J. J. Organomet. Chem. 1985, 287, 81. (b) Zhou, C.; Dubrovsky, A. V.; Larock, R. C. J. Org. Chem. 2006, 71, 1626.
- (12) Ila, H.; Junjappa, H. J. Org. Chem. 1990, 55, 5589.

- (13) Cipollina, J. A.; Ruediger, E. H.; New, J. S.; Wire, M. E.; Shepherd, T. A.; Smith, D. W.; Yevich, J. P. *J. Med. Chem.* 1991, *34*, 3316.
- (14) Cabiddu, S.; Maccioni, A.; Piras, P. P.; Plumitallo, A. *Gazz. Chim. Ital.* **1981**, *111*, 123.
- (15) Bi, X.; Dong, D.; Liu, Q.; Pan, W.; Zhao, L.; Li, B. J. Am. Chem. Soc. 2005, 127, 4578.
- (16) Chan, T.-H.; Brownbridge, P. J. Am. Chem. Soc. **1980**, 102, 3534.
- (17) For a review of 1,3-bis(silyl enol ethers) in general, see: Langer, P. Synthesis 2002, 441.
- (18) For a review of [3+3] cyclocondensations of 1,3-bis(silyl enol ethers) with 1,3-dielectrophiles, see: Feist, H.; Langer, P. Synthesis 2007, 327.
- (19) (a) Sher, M.; Ahmed, Z.; Rashid, M. A.; Fischer, C.; Langer, P. *J. Org. Chem.* **2007**, *72*, 6284. (b) Mamat, C.; Büttner, S.; Trabhardt, T.; Fischer, C.; Langer, P. *J. Org. Chem.* **2007**, *72*, 6273.
- (20) Mamat, C.; Pundt, T.; Dang, T. H. T.; Klassen, R.; Reinke, H.; Köckerling, M.; Langer, P. *Eur. J. Org. Chem.* 2008, 492.
- (21) Sher, M.; Langer, P. Synlett 2008, 1050.
- (22) Potts, K. T.; Winslow, P. A. Synthesis 1987, 839.
- (23)Typical Procedure: Synthesis of Ethyl 4-Ethyl-6hydroxy-3-methyl-2-(methylthio)benzoate (4b) To a solution of 2b (0.190 g, 1.0 mmol) and 3b (0.549 g, 2.0 mmol) in CH2Cl2 (2 mL) was added TiCl4 (0.11 mL, 1.0 mmol) at –78 $^{\circ}\mathrm{C}$ under argon. The temperature of the reaction mixture was allowed to rise to 20 °C during 14 h, and an aq HCl solution (10%, 10 mL) was added. The organic layer was separated, and the aqueous layer was extracted with CH_2Cl_2 (3 × 10 mL). The combined organic layers were dried (Na₂SO₄), filtered, and concentrated in vacuo. After column chromatography (SiO₂, heptane-EtOAc = 10:1), 4b was obtained as a colorless solid (227) mg, 89%); mp 120–121 °C; $R_f = 0.39$ (heptane– EtOAc = 3:1). ¹H NMR (250 MHz, CDCl₃): δ = 9.06 (s, 1 H, OH), 6.78 (s, 1 H, ArH), 4.43 (q, ${}^{3}J = 7.1$ Hz, 2 H, OCH₂), $2.60 (q, {}^{3}J = 7.5 Hz, 2 H, ArCH_{2}), 2.45 (s, 3 H, ArCH_{3}), 2.28$ $(s, 3 H, SCH_3), 1.41 (t, {}^{3}J = 7.1 Hz, 3 H, OCH_2CH_3), 1.18 (t, {}^{3}J = 7.1 Hz, {}^{3}H, OCH_2CH_3), 1.18 (t, {}^{3}H, {}^{3}H,$ ${}^{3}J = 7.5$ Hz, 3 H, ArCH₂CH₃). ${}^{13}C$ NMR (300 MHz, CDCl₃): δ = 170.2 (C=O), 156.9 (CO), 148.8, 136.2, 132.7, 117.3 (C_{Ar}), 116.9 (CH_{Ar}), 61.8 (OCH₂), 27.6 (ArCH₂), 20.0, 16.2, 14.0, 13.8 (CH₃). IR (ATR): v = 3298 (OH), 1699 (C=O) cm^{-1} . MS (EI, 70 eV): m/z (%) = 254 (39) [M⁺], 209 (21), 208 (100), 193 (8), 180 (27), 165 (32). Anal. Calcd for C₁₃H₁₈O₃S (254.10): C, 61.39; H, 7.13. Found: C, 61.35; H, 7.27.
- (24) CCDC-685823 contains all crystallographic details of this publication and is available free of charge at www.ccdc.cam.ac.uk/conts/retrieving.html or can be ordered from the following address: Cambridge Crystallographic Data Centre, 12 Union Road, Cambridge CB2 1EZ, UK; fax: +44(1223)336033; or deposit@ccdc.cam.ac.uk.

Copyright of Synlett is the property of Georg Thieme Verlag Stuttgart and its content may not be copied or emailed to multiple sites or posted to a listserv without the copyright holder's express written permission. However, users may print, download, or email articles for individual use.