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Abstract: A new synthetic protocol for the one-pot, stereoselective
synthesis of (E)-poly(arylenevinylene)s via palladium-catalyzed
Hiyama cross-coupling of dihaloarenes with cyclic gem-bis(si-
lyl)ethene or isopropoxydimethylvinylsilane is described.
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Poly(arylenevinylene)s (PAV) constitute a group of p-
conjugated polymers that have attracted considerable in-
terest because of their potential applications in electronic
and optoelectronic devices including light-emitting di-
odes, solar cells, plastic lasers, fluorescent sensors, re-
chargeable batteries, field-effect transistors, etc.1 In the
context of their wide applications, synthetic design of
PAV has attracted a great deal of recent interest.2

Conventional approaches to poly(arylenevinylene)s in-
volve dehydrohalogenative polycondensation of bis(ha-
lomethyl)benzenes (Gilch reaction),3 thermolysis of
sulfonium polymer precursors (Wessling route),4 Wittig–
Horner polycondensation of xylylene diphosphonates
with phthalaldehydes,5 palladium-catalyzed Heck reac-
tion of ethylene6 or divinylarenes7 with dihaloarenes as
well as palladium-catalyzed Suzuki–Miyaura coupling of
difunctional arylboronic derivatives with di(haloalke-
nyl)arenes.8

The palladium-catalyzed and fluoride-promoted cross-
coupling of unsaturated organosilicon compounds with
aryl halides (Hiyama coupling) has been recently em-
ployed as a mild and efficient alternative to the well-es-
tablished Stille and Suzuki reactions due to commercial
availability, high stability, and low toxicity of the silicon
derivatives.9 Although there are many reports on the suc-
cessful applications of the Hiyama coupling in the synthe-
sis of molecular p-conjugated organic frameworks, the
potential use of this particular method for the synthesis of
arylenevinylene oligomers and polymers has not been so

far fully exploited. Recently, Ozawa and co-workers re-
ported a stereocontrolled synthesis of trans- and cis-oli-
go(arylenevinylene)s using Hiyama-type
polycondensation of substituted 1,4-diiodobenzenes with
1,4-bis(silyl-ethenyl)benzenes.8c,10 An interesting silicon-
assisted alternative for the synthesis of PAV seems to be
also palladium-catalyzed poly-Heck reaction of bisarene-
diazonium salts with vinyltriethoxysilane.11 However, ap-
plication of this particular method has been limited be-
cause of commercial unavailability of bisarene-diazonium
salts, whose synthesis from very toxic aryl diamines is
challenging even for the most common PAV precursors.

Therefore, we wish to report herein the first, unprecedent-
ed, one-pot, palladium-catalyzed Hiyama-type strategy
for the stereoselective synthesis of (E)-poly(arylenevi-
nylene)s using aryl dihalides and isomeric bis(si-
lyl)ethenes as new double-bond equivalents.

During the course of our studies on the reactivity of gem-
inal bis(silyl)alkenes towards carbon electrophiles, we
have unexpectedly found that 2,2,4,4-tetramethyl-1,5-di-
oxa-3-methylene-2,4-disilacycloheptane (1), in the reac-
tion with 2 equivalents of aryl iodides (iodobenzene and
4-iodoanisole), under standard cross-coupling conditions
forms exclusively (instead of the expected 1,1-di-
arylethenes) cine-substitution products – (E)-stilbene and
(E)-4,4¢-dimethoxystilbene, respectively, with perfect ste-
reoselectivity and almost quantitative yield (Scheme 1).12

Although cine-substitution of 1-aryl-1-silylethenes in pal-
ladium-catalyzed cross-coupling with aryl iodides or aryl-
diazonium salts has been previously reported,13 the
simultaneous ipso- and cine-substitution of geminally si-
lylated ethenes under Hiyama conditions is unprecedent-
ed.

Since the starting compound 1 can be easily prepared with
high yield in a two-step process from inexpensive chlo-
rodimethylvinylsilane and ethylene glycol using silyla-
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tion–ruthenium-catalyzed silylative coupling–exo-
cyclization sequence,14 this novel bis(silyl)ethene trans-
formation is expected to be an attractive alternative for the
synthesis of arylenevinylene polymers.

We began our investigations with the cross-coupling be-
tween cyclic 1,1-bis(silyl)ethene 1 and 1,4-diiodobenzene
using Pd2(dba)3 as a catalyst and TBAF as an activator.
Under standard cross-coupling reaction conditions (30–
40 °C), the expected product was not observed, whereas at
55 °C the low conversion of diiodoarene has been detect-
ed (ca 40%). Increasing the temperature to 80 °C complet-
ed this reaction in 16 hours with only 0.5 mol% loading of
Pd2(dba)3 per silyl group.

These optimal conditions were applied to the other aryl di-
iodides providing almost quantitative yields (94–98%) of
the desired polymeric products (Table 1).15 Only 1,4-di-
iodotetrafluorobenzene gave the expected polymer with

lower yield (Table 1, entry 5) and an increase of the
amount of Pd catalyst (from 0.5 to 2 mol% per silyl group)
as well as a longer reaction time did not appreciably affect
the rate of this process.

It is worth noting that all the coupling processes proceed-
ed in stereoselective manner to yield products containing
only (E)-vinylene units in the polymer chain. Moreover,
the application of more available and cheaper aryl dibro-
mides to our new silicon-assisted methodology has signif-
icantly broadened its utility. The conversion of 1,4-
dibromobenzene and 4,4¢-dibromobiphenyl has been only
slightly lower than that of 1,4-diiodobenzene under the
analogous reaction conditions (Table 1, entry 2, 7).

With the optimized conditions established for cyclic 1,1-
bis(silyl)ethene, we turned our attention towards the one-
pot synthesis of PAV by successive silylative coupling –
Hiyama coupling proceeding via (E)-1,2-bis(silyl)ethene
intermediate. In the first step, unsaturated organosilicon
precursors were synthesized using ruthenium hydride cat-
alyzed silylative coupling of the respective vinylsilane
and then the post reaction mixture was treated with an ap-
propriate dihaloarene under the Hiyama cross-coupling
conditions (Scheme 2). In this process, isopropoxydi-
methylvinylsilane (8) was used to facilitate the next palla-
dium-catalyzed cross-coupling.

The silylative coupling of 8 successfully proceeded in the
presence of [RuHCl(CO)(PPh3)3] (2 mol%) in dioxane,
and the starting vinylsilane was efficiently transformed
into an almost equimolar mixture of isomeric (E)-1,2-
bis(isopropoxydimethylsilyl)ethene A and 1,1-bis(iso-
propoxydimethylsilyl)ethene B (Scheme 2) in 16 hours at
110 °C. Moreover, the use of CuCl (2 mol%) as a co-cat-
alyst caused a slight increase in the catalytic activity of the
ruthenium–hydride complex. Although toluene or chlo-
robenzene could also be employed without affecting ei-
ther the activity of the catalytic system or the selectivity
of this process, the use of dioxane seemed to be the most
favorable due to its higher effectiveness in the following
palladium-catalyzed coupling.

Similarly to the reactions with 1, palladium-catalyzed
coupling of the isomeric bis(silyl)ethenes A and B with
aryl dihalides in the presence of TBAF and Pd2(dba)3 (1
mol%) catalyst proceeded stereoselectively to give satis-
factory yields of the desired poly(arylenevinylene)s
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Table 1 Synthesis of (E)-Poly(arylenevinylene)s via Palladium-
Catalyzed Cross-Coupling of Cyclic 1,1-Bis(silyl)ethene with Aryl 
Dihalidesa

Entry Aryl dihalide Time (h) Product17 Yield (%)b

1 1,4-I2C6H4 16 2 96

2 1,4-Br2C6H4 24 2 94

3 1,3-I2C6H4 24 3 98

4 1,2-I2C6H4 24 4 97

5 1,4-I2C6F4 48 5 35

6 4,4¢-I2C6H4-C6H4 24 6 98

7 4,4¢-Br2C6H4-C6H4 24 6 95

8 2,5-I2C4H2S 24 7 97

a [1]:[XArX]:[TBAF]:[Pd2(dba)3] = 1:0.9:2.4:0.01, dioxane, 80 °C.
b Isolated yields of products.
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(Table 2).16 This particular reaction proceeded via com-
petitive stereospecific coupling of (E)-bis(silyl)ethene in-
termediate and afore-mentioned rearrangement of
geminal bis(silyl)ethene derivatives. The results of the
one-pot silylative coupling–Hiyama coupling are depicted
in Table 2.

p-Arylene polymers were isolated by simple filtration
from the reaction mixture. The PAV containing o-phen-
ylene or thienylene units were isolated by column chro-
matography. All polymers were washed with acetone in
order to remove traces of oligomers and catalyst and dried
under vacuum. Due to the lack of polar lateral substitu-
ents, these polymers were found to be only poorly soluble
in CHCl3 and partly in THF. Molecular weights of THF
soluble fractions of polymers obtained were measured by
GPC using THF as an eluent and polystyrene standards.

Due to the insolubility of the resulting products, the ma-
trix-assisted laser desorption–ionization mass spectrome-
try (MALDI-MS) was also applied for estimation of their
molecular weights. The MALDI-MS spectra of 2 and 5 in
ditranol as a matrix revealed only short chain polymers:
11–18-mer and 6–10-mer, respectively. The LSIMS of
these compounds in NBA as matrix revealed chains till
25-mer characterized by very low intensity peaks and high
polydispersity. The polymers in solution subjected on UV
light (366 nm) emit intensive blue (2–6) or green (7) light.
Representative physical properties of the selected prod-
ucts are presented in Table 3.

The structure of the resulting polymers was proved by FT-
IR and 1H NMR spectroscopy. The presence of (E)-vi-
nylene functionality was unambiguously confirmed by
the appearance of FT-IR bands attributable to CH bending
of trans-vinylene at 936–971 cm–1. Unfortunately, the

corresponding 1H NMR signals fall in the region of aro-
matic protons and could be assigned only for (E)-
poly(1,4-phenylenevinylene) oligomers 2 (J = 19 Hz) and
(E)-poly(tetrafluorophenylenevinylene)s 5 (J = 16 Hz). It
may be noted that the presence of 1,1-diarylenevinylene
defects in the polymers, which are usually formed during
other palladium-catalyzed processes was not detected.

In conclusion, we have developed a new, efficient, highly
stereoselective, one-pot synthetic methodology for the
construction of (E)-poly(arylenevinylene)s based on pal-
ladium-catalyzed Hiyama cross-coupling of cyclic bis(si-
lyl)ethene or sequential silylative coupling–Hiyama
cross-coupling of isopropoxydimethylvinylsilane with
aryl dihalides. The availability of starting materials, the
simplicity of the experimental technique, and the use of
aryl dibromides instead of aryl diiodides are favorable
features of this new catalytic approach to stereodefined
PAV polymers.
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IR (KBr): 740.5 (s), 834.8 (s), 964.7 (s), 1015.2 (s), 1256.0, 
1488.6, 1512.8, 1596.6, 1695.9 (s, br), 2922.6, 2953.9, 
3021.6 (s) cm–1. 1H NMR (300 MHz, DMSO-d6): d = 0.15 (s, 
SiCH3), 0.21 (s, SiCH3), 6.50 (d, J = 19.2 Hz, PhCH=), 6.94 
(d, J = 19.2 Hz, PhCH=), 7.41 (d, J = 8.5 Hz, H in phenyl 
ring), 7.54 (d, J = 8.5 Hz, H in phenyl ring) ppm. 13C NMR 
(75 MHz, DMSO-d6): d = 0.1, 0.5, 0.8, 29.0, 31.3, 128.2, 
128.7, 129.2, 132.4 ppm. Anal. Calcd for (C8H6)n: C, 94.07; 
H, 5.92. Found: C, 91.58; H, 5.43.
(E)-Poly(2,3,5,6-tetrafluorophenylenevinylene)s (5)
IR (KBr): 758.7 (s), 938.6, 979.5, 1091.1 (s, br), 1215.7, 
1486.4, 1527.7, 1617.3, 1652.9, 2928.8, 2961.1, 3019.3 (s) 
cm–1. 1H NMR (300 MHz, CDCl3): d = 0.10 (s, SiCH3), 0.20 
(s, SiCH3), 7.09 (d, J = 16 Hz, PhCH=), 7.75 (d, J = 16 Hz, 
PhCH=) ppm. 13C NMR (75 MHz, CDCl3): d = –0.2, 0.6, 
29.4, 29.7, 30.3, 125.4, 128.4, 128.9, 130.5, 143.4 ppm. 
Anal. Calcd for (C8F4H2)n: C, 55.19; H, 1.19. Found: C, 
55.37; H, 1.43.
(E)-Poly(2,5-thiophenylenevinylene)s (7)
IR (KBr): 790.6 (s, br), 935.8, 1039.4 (s, br), 1070.1, 1258.5, 
1444.5, 1618.6, 1655.2, 1722.2, 2924.3, 2957.4, 3065.4 
cm–1. 1H NMR (300 MHz, CDCl3): d = 0.08 (s, SiCH3), 0.20 
(s, SiCH3), 6.40–7.80 (m, H in thiophenyl ring and ArCH=) 
ppm. 13C NMR (75 MHz, CDCl3): d = 0.1, 0.9, 14.2, 19.6, 
23.1, 29.8, 30.4, 124.2, 125.4, 128.3, 128.7, 128.8, 130.4, 
130.8, 143.2 ppm. Anal. Calcd for (C6H4S)n: C, 66.62; H, 
3.72; S, 29.64. Found: C, 62.58; H, 3.03; S, 28.33.
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