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Catalytic enantioselective addition of vinyl groups to C-based
electrophiles constitutes a versatile class of C�C bond
forming processes.[1–3] We recently reported that vinylalumi-
num reagents, generated through reactions of alkyl- or
alkenyl-substituted terminal alkynes with commercially avail-
able and inexpensive diisobutylaluminum hydride (dibal-H),
can be used in site- and enantioselective Cu-catalyzed allylic
alkylations.[4] The above protocol, however, suffers from two
notable deficiencies. First, cis vinylmetals cannot be accessed
(> 98% trans product formed due to syn addition of Al�H to
terminal alkynes). Second, aryl-substituted vinylaluminums
cannot be utilized since the corresponding hydroaluminations
are inefficient.[5] Herein, we present solutions to the above
shortcomings through efficient, site- and stereoselective
preparation of vinylaluminum reagents by reactions of Si-
substituted alkynes with dibal-H. The vinylmetals can be used
in situ in site- and enantioselective Cu-catalyzed allylic
alkylations.[6] Enantiomerically enriched vinylsilanes are
proto-desilylated with trifluoroacetic acid (TFA), affording
the derived Z or E alkenes typically as a single stereoisomer
in up to > 99:1 enantiomeric ratio (e.r.).

The present investigations originated partly from consid-
erations regarding application of the enantioselective allylic
alkylations of vinylaluminum reagents,[4] catalyzed by chiral
bidentate N-heterocyclic carbene (NHC) Cu complexes,[7] to
synthesis of nyasol.[8] The proposed plan (Scheme 1) demands
the efficient and selective formation of a Z vinylaluminum
from an aryl-substituted alkyne. Consequently, addressing the
aforementioned drawbacks, namely identification of a proto-
col allowing efficient access to a cis vinylmetal derived from
an aryl-substituted alkyne, was required.

We surmised that a silyl substituent at the alkyne terminus
(I, Scheme 2) would allow hydroaluminations of aryl-substi-
tuted substrates to proceed readily and with minimal byprod-
uct formation. Efficiency would arise from stabilization of the
incipient electron density at the carbon of the C�Al bond by
the d orbitals of silicon, or through hyperconjugation with the

low-lying s* orbital of the adjacent C�Si.[9] Accordingly, site-
and stereoselective hydrometallation of a silyl-substituted
alkyne[10] (I, Scheme 2), reaction of the resulting vinylmetal
(II) with an electrophile (!III), followed by protonation of
the C�Si bond (!IV) would deliver the desired product
bearing a trans alkene. The corresponding Z olefin could be
obtained stereoselectively (via V–VII, Scheme 2) if the initial
hydroalumination adduct (II) could be induced to undergo
isomerization, positioning the large aryl and silyl substituent
trans to one another.

To access the requisite cis vinylmetals, we turned to the
pioneering investigations of Eisch, disclosed nearly four
decades ago, in connection with hydroaluminations of silyl-
substituted alkynes.[11] Treatment of trimethylsilyl-substituted
phenylacetylene 1 with dibal-H in 5:1 hexanes:THF (55 8C,
2 h) leads to vinylaluminum 2 in > 98% Z-selectivity
(Scheme 3). When hydrometallation is performed in hexanes,
3 is formed with > 98 % E-selectivity (> 98% conv.). A
mechanistic scheme, related to that suggested by Eisch,[11] is
illustrated in Scheme 3. In the absence of Lewis basic THF,
alkene isomerization occurs readily (VIII!IX!X) due to
the energetically accessible and unoccupied p orbital of the Al
metal. When THF is present, its coordination to the Lewis

Scheme 1. Projected diastereo- and enantioselective synthesis of
nyasol through Cu-catalyzed allylic alkylation with a cis vinylaluminum
reagent. NHC= N-heterocyclic carbene, PG= protecting group.

Scheme 2. Synthesis of a cis- or trans-disubstituted alkene may be
accomplished through hydroalumination/desilylation of a Si-substi-
tuted alkyne.
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acidic Al inhibits isomerization of the initially generated Z-
vinylmetal. In both cases, hydroaluminations proceed with
> 98% site-selectivity.

Next, we examined the related NHC-Cu-catalyzed enan-
tioselective allylic alkylations. Subjection of 1.5 equivalents of
vinylaluminum 3, prepared and used in situ, to aryl and alkyl-
substituted allylic phosphates 4 a–k, in the presence of 1.0
mol% NHC-AgI complex 5 and 2.0 mol % CuCl2·2H2O,
results in complete substrate consumption (Table 1). 3-Sub-
stituted 1,4-dienes 6a–k are generated with> 98% site-
selectivity (SN2’), in 82% to > 98% yield and in 94:6 to
> 99:1 e.r. Selectivities are high, regardless of the steric or
electronic attributes of aryl substituents of the allylic phos-
phates. Alkyl-substituted substrates (entries 10–11, Table 1)
can be used effectively in the hydroalumination/allylic
alkylation process, albeit with somewhat lower enantioselec-
tivity (94:6 e.r.). In all the transformations examined, there is
> 98% E-selectivity, and products derived from the addition
of an iBu unit of the Al-based reagent are not detected (< 2%
by 400 MHz 1H NMR analysis). It is thus a notable attribute
of this class of transformations that the overall process,
beginning with the silyl-substituted alkyne and ending with
the enantiomerically enriched dienes, requires five distinct
issues of selectivity to be addressed: site- and stereoselectivity
in generation of the vinylaluminum (Scheme 3), followed by
site- (SN2’ vs. SN2), group- (vinyl- vs. iBu addition) and, finally,
enantioselectivity of allylic alkylation. In reactions summar-
ized in Table 1, there is complete (> 98 %) control of
selectivity in all aspects except product enantiomeric purity,
which varies between 94:6 and > 99:1 e.r.

Sequential hydroalumination/Cu-catalyzed allylic alkyla-
tion can be performed with silyl-substituted alkynes bearing
different aryl units (Table 2). Products are isolated with
complete site- and group-selectivity and in 92:8–99:1 e.r.
Hydroaluminations proceed with exceptional site-selectivity,
irrespective of the steric or electronic characteristics of the
alkyne substituent. Only in one instance is the final product
isolated as a mixture of E and Z isomers (entry 4, 88:12 E :Z).
The incomplete vinylaluminum isomerization may be due to

destabilization of the zwitterionic structure (IX in Scheme 3)
by the electron withdrawing p-CF3 unit.

The representative example, illustrated in Equation (1),
underlines the exceptional efficiency of this single-vessel class
of transformations. Approximately 0.5 gram of 6a (90%
yield) can be synthesized in 98.5:1.5 e.r. and 95:5 site-
selectivity (SN2’:SN2) through a reaction that proceeds with
otherwise complete (> 98%) selectivity, requiring only 0.05
mol% (1.1 mg) of chiral NHC-AgI complex 5.

The first enantioselective synthesis of nyasol was subse-
quently realized (Scheme 2). Pd-catalyzed cross-coupling[12]

of commercially available trimethylsilylacetylene with 4-
iodophenol delivers the substrate (8) required for site- and

Scheme 3. Stereoselective hydroalumination of trimethylsilylphenylace-
tylene with dibal-H, and a rationale for the effect of a Lewis base
(THF). dibal-H = (iBu)2AlH.

Table 1: Catalytic enantioselective allylic alkylations with vinylaluminum
reagent 3 promoted by NHC–Cu complex derived from 5.[a]

Entry Substrate [R] Yield [%][b] SN2’:SN2[c] E :Z[c] e.r.[d]

1 4a [Ph] 93 >98:2 >98:2 99:1
2 4b [oMeC6H4] 96 >98:2 >98:2 99:1
3 4c [oMeOC6H4] 82 >98:2 >98:2 98:2
4 4d [oNO2C6H4] 89 >98:2 >98:2 >99:1
5 4e [mBrC6H4] 95 >98:2 >98:2 99:1
6 4 f [pClC6H4] 94 >98:2 >98:2 98.5:1.5
7 4g [pNO2C6H4] 87 >98:2 >98:2 97.5:2.5
8 4h [pTsOC6H4] >98 >98:2 >98:2 99:1
9 4 i [pMeC6H4] 92 >98:2 >98:2 >99:1
10 4 j [(CH2)2C6H5] 88 >98:2 >98:2 94:6
11 4k [Cy] 88 >98:2 >98:2 94:6

[a] Reactions were performed under N2 atmosphere; >98% conversion
and <2% iBu addition product in all cases (400 MHz 1H NMR analysis
of unpurified product mixtures). [b] Yields of isolated purified products.
[c] Site-selectivities and alkene stereoselectivities established by analysis
of 400 MHz 1H NMR spectra of product mixtures prior to purification.
[d] Enantiomer ratios determined by HPLC analysis; see the Supporting
Information for details.

Table 2: Catalytic enantioselective allylic alkylations with various vinyl-
aluminum reagents promoted by NHC–Cu complex derived from 5.[a]

Entry Product [R] t [h] Yield [%][b] SN2’:SN2[c] E :Z[c] e.r.[d]

1 7a [oMeOC6H4] 12 94 >98:2 >98:2 92:8
2 7b [mMeC6H4] 6 82 >98:2 >98:2 99:1
3 7c [pFC6H4] 12 70 >98:2 >98:2 97:3
4 7d [pCF3C6H4] 12 70[e] >98:2 88:12 97:3[e]

5 7e [pMeC6H4] 6 91 >98:2 >98:2 99:1

[a-d] See Table 1. [e] Data pertain to the major E isomer.
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stereoselective hydroalumination in 76 % yield (Scheme 4).[13]

Treatment of 8 with dibal-H (55 8C, 2 h) delivers vinylalumi-
num 9, which is used in Cu-catalyzed allylic alkylation of
allylic phosphate 10. The one-pot process furnishes silyl-
substituted 1,4-diene 11 with complete control of alkene
selectivity (> 98% E), as well as > 98 % group- (< 2% iBu
addition) and site-selectivity (< 2% SN2) in 76% yield and
98.5:1.5 e.r. (�)-Nyasol is obtained in 73% yield from 11 by a
three-step procedure that includes proto-desilylation with
trifluoroacetic acid (42 % overall yield from commercially
available trimethylsilylacetylene).[14]

The Z-vinylaluminum reagents, such as 2 (Scheme 3),
obtained site-selectively through syn aluminum hydride
addition to silyl-substituted aryl alkynes, allow us to obtain
products that cannot be efficiently accessed by direct hydro-
alumination of aryl-substituted alkynes.[5] An assortment of
enantiomerically enriched 1,4-dienes can be obtained through
enantioselective Cu-catalyzed allylic alkylation with this set
of stereochemically defined organometallic reagents
(Table 3). Similar to reactions with E vinylaluminum reagents
(Tables 1–2 and Scheme 4), when 13a–g are used (Table 3),
high site- (> 98 % SN2’) and enantioselectivity are observed
(95.5:4.5–98.5:1.5 e.r.).[15] In all instances except one (Z :E =

90:10, entry 7),[16] there is > 98 % Z-selectivity.
Several points regarding the data in Table 3 merit further

discussion:
1) In contrast to reactions of E-vinylaluminums (Tables 1–2

and Scheme 4), 7–28% of the products derived from
addition of an isobutyl group are observed (Table 3). The
origin of such group-selectivity differences is likely due to
subtle variations in equilibria involving the formation of
vinyl- versus isobutylcopper complexes as well as the

relative facility with which such entities undergo allylic
alkylation (i.e., only C�C bond formation may be
irreversible).

2) Allylic alkylations with Ag complex 5, used in reactions of
E vinylaluminum reagents (Tables 1–2 and Scheme 4),
furnish similar efficiency and site-selectivity (vs. 12). With
complex 12, however, enantioselectivity is improved
significantly. As an example, the transformation shown
in entry 1 of Table 3 generates 14 in 86.5:13.5 e.r. when 5 is
used, whereas in the presence of 12 the desired 1,4-diene is
isolated in 97:3 e.r. The amount of product derived from
isobutyl addition is slightly lower with complex 5 (96:4 vs.
91:9 with 12). Similarly, when 12 is used to promote
addition of E-vinylsilane 3 to 4 a, under otherwise identical
conditions, only 53 % conversion is observed and 6a is
obtained in 94.5:5.5 e.r. (vs. > 98 % conv. and > 99:1 e.r.
with 5). The rationale for such selectivity differences is
unclear.

3) Vinylaluminums 13a–g, bearing a dimethylsilyl hydride
(vs. trimethylsilyl), are employed because the correspond-
ing Cu-catalyzed allylic alkylations proceed with a stron-
ger preference for the transfer of the vinyl unit (vs. iBu
group). For example, when trimethylsilyl 2 (see Scheme 3)
is used for the reaction in entry 1 of Table 3, 40% isobutyl
addition is observed (vs. 9% with 13a).

Proto-desilylation of the enantiomerically enriched 1,4-
dienes shown in Table 3, obtained from the single-vessel
process, can be utilized to access the products expected from a
sequence beginning with hydroalumination of aryl-substi-
tuted terminal alkynes, which, as mentioned before,[5]

undergo hydrometallation inefficiently.[5] The example pro-
vided in Equation (2) is a case in point.

Scheme 4. Enantioselective synthesis of (�)-nyasol, featuring a one-pot alkyne hydroalumination/Cu-catalyzed enantioselective allylic alkylation.
TFA = trifluoroacetic acid.
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We therefore demonstrate that trisubstituted vinylalumi-
num reagents, accessed by hydroalumination of silyl-substi-
tuted alkynes, offer a practical protocol for stereoselective
synthesis of alkenes. The application to Cu-catalyzed enan-
tioselective allylic alkylation represents one of several other
possible C�C bond forming processes feasible through the use
of these vinylmetal reagents. Such considerations, together
with continuing advances in catalytic cross-coupling reactions
of vinylsilanes,[17] augur well for upcoming developments
regarding diastereo- and enantioselective synthesis of mole-
cules bearing a trisubstituted alkene.
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