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Palladium-catalyzed intra-molecular olefin insertion
reaction of a-alkenyl-a-acyloxytrialkylsilane. Synthesis

of optically active carbocycle
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Abstract—Pd-catalyzed intra-molecular olefin insertion/carbonylation reaction of optically active a-alkenyl-a-acyloxysilanes is
described. The reactions proceeded in a stereoselective manner to give five- and six-membered optically active carbocycles having
(E)-vinylsilane in their side chains. Under CO condition, optically active carbocycles containing one-carbon homologated side chain
were produced by Pd-catalyzed tandem olefin insertion–carbonylation reaction.
� 2007 Elsevier Ltd. All rights reserved.
Optically active a-alkenyl-a-acyloxysilane has received
significant attention because of its chirality transferring
property from the a- to c-position through a cationic
rearrangement1 or an electrocyclic rearrangement of its
acyloxy-derived enolate.2 In the previous report, we
demonstrated that a novel p-allyl palladium species, an
equivalent of a putative a,c-silylallyl cation (Fig. 1),
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could be generated from optically active a-alkenyl-a-
acyloxysilane using a Pd catalyst.3 This reactive species
was trapped by an external or internal nucleophile to
give an acyclic or cyclic c-substituted vinylsilane, exclu-
sively, where the a-silyl group played a crucial role for
the regio- and stereo-selective C–C bond forming reac-
tions owing to its steric and stereo-electronic features.4
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The next stage of our synthetic work was to extend these
results to a Pd-catalyzed olefin insertion reaction, which
was initially developed by Oppolzer et al. and was
proven to be a powerful method for the synthesis of
five- and six-membered ring systems.5 We envisaged that
the olefin insertion reaction of optically active a-alken-
yl-a-acetoxysilane would proceed via the p-allyl palla-
dium intermediate A to produce carbocycle having a
vinylsilane, where the original chirality at the acetoxy
carbon would be transferred to the newly formed chiral
center. Furthermore, in the presence of carbon mono-
xide, palladium would catalyze both olefin insertion and
CO insertion to give a one-carbon homologated cyclic
product.6 These results are described in this Letter.

According to Oppolzer’s protocol,7 we examined Pd-
catalyzed cyclization of a-alkenyl-a-acetoxysilanes 1a–c
(Table 1), prepared in optically active form (Supplemen-
tary data). Treatment of (R)-1a (n = 1, 92% ee) with
Pd(PPh3)4 (0.1 equiv) and PPh3 (0.1 equiv) in AcOH
(degassed) at 85 �C for 1 h underwent olefin insertion
reaction to afford cyclized product 28 having (E)-vinylsil-
ane in 89% yield (entry 1). Optical purity of 2 was deter-
mined to be 92% ee, and its absolute configuration was
R (Supplementary data). Pd-catalyzed cyclization of
(R)-1b (n = 2, 92% ee) required prolonged reaction per-
iod (20 h) under the same reaction conditions to afford
six-membered cyclized product 3 (60%)9–11 together with
recovery of 1b (20%) (entry 2). The ee of the starting 1b
was also completely retained in 3 (92% ee).12 Using
EtOH or THF as the solvent, conjugate diene 4 was pro-
duced together with recovery of 1b (entry 3,4).13 The
reaction of 1c (n = 3) under the standard conditions
resulted in a complete recovery of the starting 1c,
Table 1. Pd-catalyzed olefin insertion of a-alkenyl-a-acetoxysilanes
1a–c

TBDMS CO2Me
CO2Me

OAc n

R

1a: n = 1
1b: n = 2
1c: n = 3

RTBDMS CO2Me

CO2Me

92% ee
2: n = 1
3: n = 2

n

AcOH, 85 oC

Pd(PPh3)4
(0.1 equiv)

PPh3
(0.1 equiv)

Substrate Time (h) Product Yield (%) Recovery of
1 (%)

1 1a 1 2 89 (92% ee) —
2 1b 20 3 60a (92% ee)b 20
3c 22 3 30a 20d

4e 22 3 — 63f

5 1c 22 — — quant
6g 6 — — 50h

a See Ref. 10.
b See Ref. 12.
c EtOH was used as the solvent.
d Diene 4 (39%) was by-produced.
e THF was used as the solvent.
f Diene 4 (37%) was produced.
g 110 �C.
h Diene 5 (17%) was produced.

TBDMS CO2Me
CO2Me

n

4: n = 2
5: n = 3
probably due to a latent ring strain in construction of
a medium-sized ring (entry 5). Under elevated tempera-
ture (110 �C), conjugate diene 5 (17%) was produced
with recovery of 1c (50%) (entry 6).

The present Pd-catalyzed cyclization reaction is charac-
terized by the following points: (1) the reaction of the
(R)-acyloxysilanes gave the (R)-enantiomer of the prod-
uct without any loss of optical purity, (2) carbon–carbon
bond formation occurred exclusively at the c-position to
silicone, and (3) the product had an (E)-vinylsilane moi-
ety. Thus, oxidative addition of Pd(0) into (R)-1a would
occur from the backside of the acetoxy group followed
by coordination to the internal olefin to give optically
active p-allyl palladium intermediates A1 and/or A2
(Scheme 1). The olefin insertion took place at the c-
position to afford r-palladium complexes cis-B and/or
trans-B. Subsequent b-hydride elimination of Pd(II) in
B afforded (R)-2.14

Next, we examined Pd-catalyzed tandem olefin inser-
tion/carbonylation reaction of a-alkenyl-a-acyloxysilane
1a (Scheme 2). Reaction of (R)-1a with Pd(PPh3)4

(0.1 equiv), PPh3 (0.1 equiv) and CO (5 atm) at 95 �C
for 3 h followed by treatment of the reaction mixture
with H2O gave carboxylic acid 6, which, upon esterifica-
tion with CH2N2, gave triester 7 (cis:trans = 1:2.3, 88%
from 1a). The relative configuration of 7 was confirmed
by the conversion of 6 to a bicyclo[4.3.0]-ring system
(vide infra). The reaction under 1 atm of CO gave a mix-
ture of 7 (70%, cis:trans = 1:2.3) and the non-carbon-
ylated (R)-2 (22% yield, 92% ee) indicating that CO
insertion took place over b-hydride elimination from
cis-B and/or trans-B at higher pressure of CO. Now, it
was clearly understood that cyclization to 2 occurred
from both intermediates cis-B and trans-B via A1 and
A2, respectively, since tandem insertion/carbonylation
reaction gave a mixture of cis-6 and trans-6 (1:2.3), as
shown in Scheme 1. We expected that successive olefin
insertion would occur from intermediate C to give opti-
cally active bicyclic compounds 9.15 However, such com-
pounds were not obtained in this case, probably due to
the steric hindrance of the TBDMS group, which would
prevent the olefin coordination.16

Construction of a bicyclo[4.3.0]-ring system was
achieved by a vinylsilane-terminated cationic cyclization
of 6 (Scheme 2).17,18 Treatment of the crude reaction
mixture of 6 with (COCl)2 (4.5 equiv) in benzene (rt,
1 h) followed by treatment with TiCl4 (3 equiv) in
CH2Cl2 (rt, 14 h) gave a separable mixture of unsatu-
rated ketones 819 in 31% yield (4 steps from (R)-1a, cis:
trans = 1:2.3). Relative stereochemistry of cis-8 and
trans-8 was determined by the J values (6.3 Hz: cis,
12.2 Hz: trans)20 and the NOE experiments (4.0%: cis,
1.5%: trans) of their protons attached to the ring-
junction.

In summary, we have succeeded in construction of opti-
cally active five- and six-membered carbocyclic systems
having a vinylsilane in their side chains by chirality-
transferring Pd-catalyzed intra-molecular olefin inser-
tion of a-alkenyl-a-hydroxysilane, where the starting
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ee was completely transferred to the product. The reac-
tion in the presence of carbon monoxide underwent Pd-
catalyzed olefin insertion–carbonylation reaction to pro-
duce cis and trans five-membered carbocycles having a
carbonylated side chain. Further studies using the pres-
ent chirality-transferring carbon–carbon bond forming
reaction are in progress.
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