## Natural Product Synthesis

## Total Synthesis and Determination of the Absolute Configuration of (-)-Dolabriferol\*\*

Sylvain Laclef, Maris Turks, and Pierre Vogel\*

In 1996 Ciavatta et al.<sup>[1]</sup> isolated (-)-dolabriferol ((-)-1;Scheme 1) from *Dolabrifera dolabrifera*, a gastropod mollusk scarcely protected by a shell and collected off Cuba. The structure and relative configuration of (-)-1 was established



Scheme 1. (-)-Dolabriferol ((-)-1).

by advanced NMR studies and by single-crystal X-ray analysis, but the absolute configuration was not assigned.<sup>[1]</sup> It is assumed that (-)-**1** protects the shell-less mollusk from predators. The natural product is made of two polypropionate subunits linked by an ester function structural motif which is also found in natural products such as baconipyrones  $A-D^{[2]}$  and siserrone A.<sup>[3]</sup> Up to now four reports have described the attempted synthesis of (-)-**1**.<sup>[4-7]</sup>

Using our reaction cascade (oxyallylation of alkenes), which combines electron-rich dienes **2** and (*Z*)-enoxysilanes **4** through SO<sub>2</sub> umpolung,<sup>[8,9]</sup> we have developed a one-pot synthesis of  $\alpha,\beta,\gamma$ -syn,anti-stereotriads of type **6** (Scheme 2). The starting dienes **2** are obtained readily from pent-3-one, ethyl formate, and inexpensive enantiomerically enriched 1-arylethanol as the source of chirality.<sup>[10]</sup> The latter is transferred to the intermediate silyl sulfinates **5**, which are converted in situ into **6** in the presence of catalytic amounts of Pd(OAc)<sub>2</sub> and PPh<sub>3</sub> with high stereoselectivity (Scheme 2).<sup>[11,12]</sup>

We now have found that the same reaction cascade applied to (E)-enoxysilanes generates the corresponding

| [*] | S. Laclef, Prof. Dr. P. Vogel                                                                       |  |  |  |  |
|-----|-----------------------------------------------------------------------------------------------------|--|--|--|--|
|     | Laboratoire de Glycochimie et de Synthèse Asymétrique                                               |  |  |  |  |
|     | Swiss Federal Institute of Technology (EPFL)                                                        |  |  |  |  |
|     | Batochime, 1015 Lausanne (Switzerland)                                                              |  |  |  |  |
|     | Fax: (+41) 21-693-9375                                                                              |  |  |  |  |
|     | E-mail: pierre.vogel@epfl.ch                                                                        |  |  |  |  |
|     | Prof. Dr. M. Turks                                                                                  |  |  |  |  |
|     | Faculty of Material Sciences and Applied Chemistry<br>Riga Technical University, Riga 1658 (Latvia) |  |  |  |  |

[\*\*] We thank the Swiss National Science Foundation (Bern) and the Roche Research Foundation for financial support, Dr. M. L. Ciavatta for copies of the <sup>1</sup>H and <sup>13</sup>C NMR spectra of natural (-)-1, and Dr. R. Scopellitti and Dr. K. Schenk for X-ray diffraction studies.

Supporting information for this article is available on the WWW under http://dx.doi.org/10.1002/anie.201003735.

Angew. Chem. Int. Ed. 2010, 49, 8525-8527

**Scheme 2.** One-pot synthesis of  $\alpha$ , $\beta$ , $\gamma$ -syn,anti-stereotriads through SO<sub>2</sub>-induced oxyallylation of (Z)-enoxysilanes.

 $\alpha,\beta,\gamma$ -anti,anti-stereotriads in a one-pot operation (Scheme 3, Table 1). This allowed us to develop efficient syntheses of the polypropionate subunits of (–)-1. We have found also a route to combine them and to construct (–)-1, thus realizing the first total synthesis of this natural product. We also established its absolute configuration.

The reaction of diene (+)-7a and silyl enol ether 8a with an excess of SO<sub>2</sub>/toluene in the presence of  $(CF_3SO_2)_2NH$ (Tf<sub>2</sub>NH, 20 mol%) provided a mixture of silyl sulfinates,



**Scheme 3.** One-pot synthesis of α,β,γ-*anti*,*anti*-stereotriads through SO<sub>2</sub>-induced oxyallylation of (*E*)-enoxysilanes. Reagents and conditions: a) SO<sub>2</sub>, Tf<sub>2</sub>NH, CH<sub>2</sub>Cl<sub>2</sub>, -78 °C; b) Pd(OAc)<sub>2</sub> (cat.), PPh<sub>3</sub> (cat.), *i*PrOH, MeCN, K<sub>2</sub>CO<sub>3</sub>. Tf=trifluoromethanesulfonyl.

**Table 1:** Results of  $SO_2$ -induced oxyallylation cascade with (*E*)-enoxy-silanes.

| Diene   | R*<br>1-(PhCHMe) | R <sup>3</sup> | R <sup>4</sup> | Yield<br>( <b>9</b> + <b>10</b> ) | Ratio<br><b>9/10</b> |
|---------|------------------|----------------|----------------|-----------------------------------|----------------------|
| (+)-7 a | 1 <i>R</i>       | iPr            | н              | 71 %                              | <b>9aa/10aa</b> =3:1 |
| (+)-7 b | 1 <i>R</i>       | tBu            | н              | 76%                               | 9ba/10ba=5:1         |
| (−)-7 c | 15               | Ph             | Me             | 67%                               | 9cb/10cb > 95:5      |
| (−)-7 d | 15               | Me             | Me             | 72%                               | 9 db/10 db=9:1       |

## Communications

which were desulfinylated by *i*PrOH/MeCN/K<sub>2</sub>CO<sub>3</sub> in the presence of Pd(OAc)<sub>2</sub>/PPh<sub>3</sub> (10 mol%). The resulting 3:1 mixture of stereotriads **9aa** and **10aa** (71% yield) was separated readily by flash chromatography on silica gel (Scheme 3, Table 1). The reaction of (+)-**7b** and **8a** gave a 5:1 mixture of pivalates **9ba/10ba** in 76% yield. Single-crystal X-ray diffraction of **10ba** established its structure unambiguously. The reaction of diene (-)-**7c** with **8b** resulted in the stereotriad **9cb** which was isolated as a single diastereomer in 67% yield. The combination of (-)-**7d** and **8b** led to a readily separable 9:1 mixture of **9 db** and **10 db** in 72% yield.

The diastereoselectivities observed for the reaction cascades in Schemes 2 and 3 are consistent with the preferred transition states shown in Scheme 4. The hetero-Diels–Alder addition of Lewis acid activated  $SO_2$  to the least hindered face of the diene results in the formation of a zwitterionic species, which is quenched by the nucleophilic attack of the silyl enol ether to give the corresponding silyl sulfinate (e.g. 5), which leads preferentially to stereotriads 6 starting with (Z)-silyl enol ethers 4, and to diastereomers 9 starting with (E)-silyl enol ethers 8 after palladium-catalyzed desilylation and desulfinylation.



**Scheme 4.** Hypothetical transition structures for the oxyallylation reaction.

Ozonolysis of pure (+)-9aa gave the carboxylic subunit (+)-11 of (-)-1 in 61 % yield. Reduction of ketone (-)-9cb with NaBH<sub>4</sub>, L-selectride, LiBH<sub>4</sub>, or DIBAL-H was not highly diastereoselective. Fortunately, the Evans' method<sup>[13]</sup> using Bu<sub>3</sub>SnH and Me<sub>3</sub>AlCl gave the pure alcohol (-)-12 (90% yield), which was converted into (-)-13 (91 % yield). Hydrogenolysis of the phenethyl ether (H<sub>2</sub>/Pd(OH)<sub>2</sub> in EtOAc) produced the hemiacetal subunit (-)-14 (72 % yield) (Scheme 5). Its structure was established by <sup>1</sup>H and <sup>13</sup>C NMR analysis and confirmed by single-crystal X-ray diffraction. The corresponding methyl acetal (-)-15 was obtained in 69% yield by carrying out the hydrogenolysis in MeOH.

As already reported,<sup>[14]</sup> the direct esterification of analogues of (+)-**11** and (-)-**14** failed.<sup>[15,16]</sup> In order to reduce possible steric interference between these compounds, we envisioned the esterification of a suitably protected acyclic precursor of the hemiacetal (-)-**14** (Scheme 6). The enol acetate (+)-**9db** was reduced to (+)-**20** (89% yield). Protection as the allyl carbonate (+)-**21** (91% yield) followed by treatment with TiCl<sub>4</sub>/CH<sub>2</sub>Cl<sub>2</sub> provided (-)-**22** (69% yield). Esterification between (-)-**22** and (+)-**11** using Paterson's protocol<sup>[17]</sup> gave a 9:1 mixture of the desired diastereoisomers



**Scheme 5.** Conversion of stereotriads into semiprotected subunits of (-)-dolabriferol. Reagents and conditions: a)  $O_3$ ,  $CH_2Cl_2$ , -78 °C; b)  $Me_2S$ ,  $H_2O$ , RT, 61% (over two steps); c)  $Me_2AlCl$ ,  $Bu_3SnH$ ,  $CH_2Cl_2$ , -78 °C, 90%; d) MeLi·LiBr, DME/Et<sub>2</sub>O, -78 °C; e)  $H_2O/NH_4Cl$ , RT, 91% (over two steps); f) Pd(OH)<sub>2</sub>, AcOEt, RT, 72%; g) Pd(OH)<sub>2</sub>, MeOH, RT, 69%. Bz = benzoyl.



Scheme 6. Synthesis of (-)-dolabriferol and stereomer (+)-25. Reagents and conditions: a)  $Me_2AlCl$ ,  $Bu_3SnH$ ,  $CH_2Cl_2$ , -78 °C, 89%; b) Allyl chloroformate, pyridine, THF, RT, 91%; c) TiCl<sub>4</sub>,  $CH_2Cl_2$ , -78 °C, 69%; d) (+)-11, 2,4,6-trichlorobenzoyl chloride, NEt<sub>3</sub>, DMAP, toluene, -78 °C, 71%; e)  $Bu_3SnOMe$ , 70 °C, 0.1 torr; f) KF,  $H_2O$ , RT; g) CF<sub>3</sub>COOH, anisole,  $CH_2Cl_2$ , RT, 96% (over three steps); h) Pd-(OAc)<sub>2</sub>, Et<sub>2</sub>NH, TPPTS, CH<sub>3</sub>CN/H<sub>2</sub>O, RT, 99%. DMAP = 4-dimethylaminopyridine, TPPTS = 3,3',3''-phosphinidynetris (benzenesulfonic acid) trisodium salt.

(+)-23 and a diastereoisomer resulting from the concurrent based-induced (NEt<sub>3</sub>, DMAP, toluene) isomerization of (+)-11. Selective removal of the acetyl group of (+)-23 was realized by treatment in pure Bu<sub>3</sub>SnOMe at 70 °C followed by KF/H<sub>2</sub>O workup. Subsequent treatment with CF<sub>3</sub>COOH



removed the phenylethyl ether giving (+)-24 (96% yield). Final deprotection and formation of the cyclic acetal (Pd(OAc)<sub>2</sub>, HNEt<sub>2</sub>, TPPTS) gave (-)-dolabriferol (-)-1; 99% yield), the <sup>1</sup>H and <sup>13</sup>C NMR spectra of which were identical to those of natural (-)-1. Furthermore, single-crystal X-ray analysis of synthetic (-)-1 confirmed its structure. As the absolute configurations of the starting dienes 7 and of synthetic intermediates are known, our synthesis of (-)-1 establishes its absolute configuration to be (2R,3S,4S,5S,6S,2'R,3'R,4'S).<sup>[18]</sup>

Polypropionate stereotriads *syn,anti*-6 and *anti,anti*-9 are obtained in one-pot operations starting from inexpensive dienes and enoxysilanes in both their enantiomeric forms. The cyclic hemiacetal subunit (–)-14 is obtained in four steps starting from diene (–)-7c, and the carboxylic acid unit (+)-11 is prepared in only two steps. Esterification of stereotriad (–)-22 with (+)-11 has permitted the first total synthesis of (–)-dolabriferol (10 steps, 7.9% overall yield based on dienes) and has established its absolute configuration.<sup>[19]</sup> Stereomers of (–)-1 can be obtained using the same chemistry. For instance, esterification of (–)-22 with (–)-11 derived from diene (–)-7a has led to (+)-25 in good yield. The evaluation of the biological activities of (–)-1 and of its stereoisomers and analogues can now be envisioned.

Received: June 18, 2010 Published online: September 23, 2010

**Keywords:** asymmetric synthesis · natural products · polypropionates · SO<sub>2</sub> umpolung · stereotriads

 M. L. Ciavatta, M. Gavagnin, R. Pulliti, G. Cimino, E. Martinez, J. Ortea, C. A. Mattia, *Tetrahedron* 1996, 52, 12831.

- [2] D. C. Manker, D. J. Faulkner, T. J. Stout, J. Clardy, J. Org. Chem. 1989, 54, 5371.
- [3] D. J. Brecknell, L. A. Collett, M. T. Davies-Coleman, M. J. Garson, D. D. Jones, *Tetrahedron* 2000, 56, 2497.
- [4] L. C. Dias, M. A. de Sousa, Tetrahedron Lett. 2003, 44, 5625.
- [5] R. Chênevert, G. Courchesne, D. Caron, *Tetrahedron: Asymmetry* 2003, 14, 2567.
- [6] N. Pelchat, D. Caron, R. Chênevert, J. Org. Chem. 2007, 72, 8484.
- [7] T. Lister, M. V. Perkins, Org. Lett. 2006, 8, 1827.
- [8] P. Vogel, M. Turks, L. C. Bouchez, D. Markovic, A. Valera-Alvarez, J. A. Sordo, Acc. Chem. Res. 2007, 40, 931.
- [9] M. Turks, C. J. Exner, C. Hamel, P. Vogel, *Synthesis* 2009, 1065.
  [10] S. Laclef, C. J. Exner, M. Turks, V. Videtta, P. Vogel, *J. Org.*
- *Chem.* **2009**, *74*, 8882. [11] X. G. Huang, C. Craita, P. Vogel, *J. Org. Chem.* **2004**, *69*, 4272.
- [12] P. Vogel, M. Turks, L. Bouchez, C. Craita, X. G. Huang, M. C. Murcia, F. Fonquerne, C. Didier, C. Flowers, *Pure Appl. Chem.* 2008, 80, 791.
- [13] D. A. Evans, B. D. Allison, M. G. Yang, C. E. Masse, J. Am. Chem. Soc. 2001, 123, 10840.
- [14] T. Lister, Ph.D. thesis, Flinders University, Adelaide, Australia, **2006**.
- [15] Failed: Keck's modification of the Steglich protocol and Yamagushi's esterification along with its Yonemitsu and Paterson modifications.
- [16] a) G. E. Keck, E. P. Boden, J. Org. Chem. 1985, 50, 2394; b) B. Neises, W. Steglich, Angew. Chem. 1978, 90, 556; Angew. Chem. Int. Ed. Engl. 1978, 17, 522; c) J. Inanaga, K. Hirata, H. Saeki, T. Katsuki, M. Yamagushi, Bull. Chem. Soc. Jpn. 1979, 52, 1989; d) M. Hikotam, Y. Sakurai, K. Horita, O. Yonemitsu, Tetrahedron Lett. 1990, 31, 6367.
- [17] I. Paterson, D. Y.-K. Chen, J. L. Acena, A. S. Franklin, Org. Lett. 2000, 2, 1513.
- [18]  $[\alpha]_D^{25} = -25$  (c = 0.2, CHCl<sub>3</sub>); Lit.<sup>[1]</sup>:  $[\alpha]_D^{25} = -29.4$  (c = 0.7, CHCl<sub>3</sub>).
- [19] I. M. Socorro, J. M. Goodman, J. Chem. Inf. Model. 2006, 46, 606.