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Abstract: The regioselectivity of the Hiyama cross-coupling reac-
tion at various dihalo-substituted heterocycles has been studied.
Methyl 2,3-dibromo-5-furancarboxylate and n-octyltrifluorosilane
were employed to find optimum reaction conditions [CsF; Pd2dba3/
P(2-furyl)3 as catalyst, 80–150 °C in toluene or benzene] for the de-
sired transformation. Subsequent experiments with the title com-
pounds and with different primary alkyltrifluorosilanes illustrate
the generality of this regiochemical process.
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The preparation of multiply substituted heterocycles re-
mains one of the most frequently occurring, yet most de-
manding tasks in synthetic organic chemistry.1 There are
two major routes to achieve this goal: Heterocyclic ring
closure can be induced after successful introduction of the
desired substituents or of suitable substituent precursors.
Alternatively, the substituents can be introduced by a ju-
dicious selection of reaction steps that occur with the
completed heterocyclic skeleton. Following the latter con-
cept, the strategy of regioselective cross-coupling reac-
tions at multiply halogenated heterocycles has become a
useful tool that is attracting the attention of synthetic or-
ganic chemists.2 The synthesis of the neolignane eupo-
matenoid 15 (2) from 2,3,5-tribromobenzofuran (1) by a
sequence of Negishi (at C-2), Kumada (at C-5), and
Negishi (at C-3) cross-coupling reactions exemplifies
how straightforward this approach can be (Scheme 1).3

A closer look at the use of different cross-coupling vari-
ants reveals that Kumada, Negishi, Suzuki, Stille, and
Sonogashira reactions have been used most often in the
regioselective cross-coupling chemistry discussed above.
In contrast, it is surprising to note that the versatile
Hiyama cross-coupling reaction of silanes4,5 has never
been probed regarding its utility in regioselective cross-
coupling reactions. This is all the more surprising because
the scope of this particular cross-coupling reaction has
been recently expanded to a significant extent, most nota-
bly by Fu et al.6 and by Denmark et al.7 A concern with the
Hiyama cross-coupling is the high reaction temperature
that is required in many instances, which may be detri-

mental to its regio- and chemoselectivity. In this study we
have searched for optimized reaction conditions that
achieve regioselective Hiyama cross-coupling reactions
of various dihalo-substituted heterocycles and report our
results in preliminary form.

In initial studies conducted with methyl 2,3-dibromo-5-
furancarboxylate (3)8 and n-octyltrifluorosilane9 in THF,
it turned out that high reaction temperatures (120 °C) are
required to achieve notable conversion and that anhydrous
CsF is a superior activating reagent10 compared to tetra-
butylammonium fluoride, Ag2CO3, KOSiMe3, Ag2O, or
KOtBu. Further optimization experiments were conduct-
ed using Pd2dba3 (dba = dibenzylidene acetone) as the Pd
source, varying the solvent, the reaction temperature and
the ligand (Table 1).

While the regioselectivity of the reaction was consistently
in favor of the expected11 2-substituted product 4a, the
lack of chemoselectivity turned out to be a major issue.
Hydrodebromination to product 5 was observed as a ma-
jor side reaction. Only some of the ligands12 we tested are
depicted in Table 1 (entries 1–5). Tri(2-furyl)phosphane
[P(2-furyl)3]

13 emerged from these studies as the ligand of
choice. Other monodentate ligands delivered by far less
desired product either due to a much slower reaction (en-
try 1) or, in the case of tri(o-tolyl)phosphane, due to hy-
drodebromination at C-3 as a major side reaction (entry
2). Bidentate ligands 1,1¢-bis(diphenylphosphino)fer-
rocene (dppf) and 1,1¢-bis(di-2-furylphosphino)ferrocene
(dfpf) produced an increased amount of hydrodebromi-
nated material, with dfpf performing best (entry 4). When
the amount of P(2-furyl)3 was further increased (entry 6),

Scheme 1 Regioselective cross-coupling reactions employed in the
synthesis of eupomatenoid 15 (2) from 2,3,5-tribromobenzofuran (1)
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the chemoselectivity dramatically improved, while a de-
crease led to increased formation of the undesired product
5 (entry 7). The results seem to suggest that P(2-furyl)3 not
only enhances the transmetalation rate,12 but also facili-
tates the reductive elimination step.

Solvent variation (entries 8–10) was initially thought to be
ineffective, with the ratios 4a/5 being lower in all cases
than those obtained using THF, however, the result with
toluene indicated a high reactivity in this solvent with a
relatively good combined yield of 4a and 5. Upon reduc-
tion of the reaction temperature (entries 11 and 12) the
ratio 4a/5 further improved and was close to perfect at
80 °C. In the case of methyl 2,3-dibromo-5-furancarbox-
ylate (3), a further improvement was achieved by chang-
ing the solvent from toluene to benzene (entry 13).

Under optimized conditions,14 which included the use of
toluene or benzene as the solvent at a substrate concentra-
tion of 0.1 M, four equivalents of CsF, two equivalents of
the silane, 5 mol% Pd2dba3 and 40 mol% P(2-furyl)3, an
array of other dibromosubstituted heterocycles (Table 2,
entries 1–4 and 6–7) and 2,3-dichloropyridine (Table 2,
entry 5) were employed in regioselective Hiyama cross-
coupling reactions. The reaction temperature was adjusted
so that full conversion could be achieved in a reasonable

period of time. Yields varied between 57% and 84%.
Reactions were conducted in high-pressure Teflon-sealed
Schlenk tubes using appropriate safety conditions.

The regioselectivity of the reaction was assessed by 13C
NMR spectroscopy. Upon cross-coupling a significant
deshielding (Dd ≥ 20 ppm) is observed at the carbon atom
where the substitution occurred.2 In ambiguous cases, the
product was debrominated by halogen–lithium exchange
and the regioselectivity of the cross-coupling was derived
from the 1H/1H and 1H/13C coupling pattern in one- and
two-dimensional NMR spectra. In general, all substrates
underwent substitution at the same position as occurred in
previous cross-coupling reactions, i.e., the most electro-

Table 1 Optimizing the Cross-Coupling Reaction 3→4a and Mini-
mizing the Hydrodebromination 3→5

Entry Ligand (mol%) Solvent Q (°C) t (h) 4a/5 4a (%)

1 PPh3 20 THF 120 48 46:54 7

2 P(o-Tol)3 20 THF 120 21 – 15

3 dppf 10 THF 120 48 50:50 25

4 dfpf 10 THF 120 18 63:37 28

5 P(2-furyl)3 20 THF 120 22 66:34 37

6 P(2-furyl)3 40 THF 120 14 93:7 54

7 P(2-furyl)3 10 THF 120 19 35:65 20

8 P(2-furyl)3 40 MeCN 120 16 79:21 50

9 P(2-furyl)3 40 dioxane 120 16 60:40 44

10 P(2-furyl)3 40 toluene 120 24 75:25 51

11 P(2-furyl)3 40 toluene 100 24 87:13 65

12 P(2-furyl)3 40 toluene 80 17 97:3 69

13 P(2-furyl)3 40 benzene 80 15 >99:1 72
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philic position.2,15 While it is unlikely that the oxidative
addition is rate-determining for the Hiyama cross-cou-
pling reaction, the preference for substitution to occur at
the most electrophilic position may still be attributed to
this process as long as there are no other factors slowing
down the subsequent steps that take place at this position.

Despite successful reactions with most substrates, a few
heterocycles reacted either sluggishly or with insufficient
regioselectivity. In particular, thiophenes (2,3-dibromo-
and 2,4-dibromothiophene) were not suitable as sub-
strates; in these cases, either no products were obtained or
significant amounts of hydrodebrominated material
resulted, even under optimized conditions. The reactions
of 2,4-dibromopyridine suffered from low regio-
selectivity16,17 due to the similar reactivity at the two elec-
trophilic positions.

In a preliminary series of experiments we tested whether
other primary silanes could also be employed as nucleo-
philes in the regioselective Hiyama cross-coupling reac-
tion (Scheme 2). Benzyltrifluorosilane,18 (2-phenylethyl)-
trifluorosilane,9,18a and methyl 3-(trifluorosilyl)propano-
ate,4b,18a all reacted smoothly to yield the expected 2-sub-
stituted products 4b–d.

Scheme 2 Reaction of methyl 2,3-dibromo-5-furancarboxylate (3)
with various silanes in a regioselective Hiyama cross-coupling reac-
tion to products 4b–d

In summary, conditions of the Hiyama cross-coupling
reaction were successfully varied to achieve moderate to
high yields in regioselective reactions of various dihalo-
substituted heterocycles. The method opens a new route to
multiply substituted heterocycles and allows researchers
to take advantage of the known benefits of using Hiyama
cross-coupling reactions (easily accessible starting mate-
rials, high stability to air and heat, low cost, and low tox-
icity).
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