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Abstract: The first fluorine-containing 1,3-bis(silyl enol ethers),
2-fluoro-1,3-bis(trimethylsilyloxy)-1,3-butadienes, have been pre-
pared. Their reaction with electrophiles allows a convenient synthe-
sis of various open-chain and cyclic organofluorine compounds
which are not readily available by other methods.
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Organofluorine compounds play an important role in drug
discovery.1 They exhibit unique stereoelectronic proper-
ties: on the one hand the fluorine atom is fairly small, on
the other hand its high electronegativity often results in a
great improvement of drug-receptor interactions. The car-
bon–fluorine bond is chemically and biologically stable
which avoids undesired metabolic transformations. In ad-
dition, the high lipophilicity of organofluorine com-
pounds improves their in vivo transport. They also show a
very good solubility in fluorophilic solvents. Therefore,
organofluorine compounds are used as ligands2 for cata-
lytic reactions in fluorous biphasic systems and supercrit-
ical carbon dioxide.3 The unique electronic properties of
fluorinated arenes are widely used for applications in or-
ganocatalysis.4 Last but not least, fluorinated arenes and
heteroarenes are versatile building blocks in transition-
metal-catalyzed cross-coupling reactions.5

The direct fluorination of arenes, heteroarenes and several
open-chained molecules often suffers from several draw-
backs, such as low chemo- and regioselectivity or multi-
ple fluorination. An alternative strategy for the
regioselective synthesis of organofluorine compounds re-
lies on the use of appropriate fluorine-containing building
blocks in condensation and cyclization reactions. For ex-
ample, aryl fluorides have been prepared by [4+2]-
cycloaddition reactions of 2-fluoro-1-methoxy-3-trimeth-
ylsilyloxybuta-1,3-diene, 2-fluoro-3-methoxybuta-1,3-di-
ene and related dienes with alkenes or alkynes.6 Portella et
al. reported the synthesis of fluorophenols by annulation
reactions of 2,2-difluoro-1,5-diketones which were pre-
pared from trifluoromethyltrimethylsilane, acylsilanes
and enones.7

1,3-Bis(trimethylsilyloxy)-1,3-butadienes (e.g., Chan’s
diene)8,9 represent important synthetic building blocks
which have been used in formal [3+2], [3+3], [4+2] and
[4+3] cyclizations and other transformations.10 Herein, we
report the synthesis and reactions of 2-fluoro-1,3-bis(sily-
loxy)-1,3-butadienes which represent, to the best of our
knowledge, the first fluorine-containing 1,3-bis(silyl enol
ethers).11 Their reactions with electrophiles provide a con-
venient and regioselective approach to a variety of orga-
nofluorine compounds which are not readily available by
other methods.

The silylation of commercially available ethyl 2-fluoro-
acetoacetate (1a) afforded silyl enol ether 2a. The latter
was transformed, by deprotonation (LDA) at –78 °C and
subsequent addition of trimethylchlorosilane, into novel
1-ethoxy-2-fluoro-1,3-bis(trimethylsilyloxy)-1,3-butadi-
ene (3a) (Scheme 1). The fluorine substituent proved to be
compatible with the reaction conditions. 2-Fluoro-1-phe-
nyl-1,3-bis(silyloxy)-1,3-butadiene (3b) was prepared by
reaction of an Et2O solution of 1b with two equivalents of
trimethylsilyl-trifluoromethanesulfonate (TMSOTf) and
triethylamine (Scheme 2). Dienes 3a and 3b can be stored
at –20 °C under an inert atmosphere for several weeks.

Scheme 1 Synthesis of diene 3a. Reagents and conditions:
(i) TMSCl, Et3N, benzene, 20 °C, 48 h; (ii) 1. LDA, THF, –78 °C,
1 h; 2. TMSCl, –78 °C → 20 °C, 14 h.
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Scheme 2 Synthesis of dienes 3b. Reagents and conditions:
(i) TMSOTf, Et3N, Et2O, 0 °C → 20 °C, 4 h.
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The reaction of 3a with benzoyl chloride, following our
recently reported protocol,12 afforded ethyl 2-fluoro-5-
phenyl-3,5-dioxopentanoate (4; Scheme 3). The best
yields were obtained when the reactions were carried out
in the absence of Lewis acid. It is noteworthy that prod-
ucts such as 4 are not available by direct fluorination of
3,5-dioxoalkanoates, due to the formation of a mixture of
regioisomers.

The TMSOTf-catalyzed condensation of 3a with methyl
malonyl chloride afforded dimethyl 2-fluoro-3,5-dioxo-
pimelate (5; Scheme 4). The synthesis of 5 is again not
possible by fluorination of dimethyl 3,5-dioxopimelate,
due to the formation of regioisomers.

The TMSOTf-catalyzed cyclization13 of 1,3-bis(silyl enol
ethers) 3a,b with oxalyl chloride afforded the novel fluor-
inated g-alkylidenebutenolides 6a,b (Scheme 5). The
exocyclic double bond was formed with excellent Z-dias-
tereoselectivity.

The TiCl4-mediated cyclization of 3a with epichlorohy-
drin, following our recently reported protocol,14 afforded
the halogenated 2-alkylidenetetrahydrofuran 7
(Scheme 6). The exocyclic double bond was again formed
with excellent Z diastereoselectivity.

The TMSOTf-catalyzed condensation of 3a with 1-chlo-
ro-2,2-dimethoxyethane gave the 2-fluoro-6-chloro-5-
methoxy-3-oxohexanoate 8 (Scheme 7). The DBU-medi-

ated cyclization15 of 8 afforded the Z-configured 4-meth-
oxy-2-alkylidenetetrahydrofuran 9.16

The TMSOTf-mediated reaction of 3a with 3-cyano-
chromone (10) gave condensation product 11. The latter
was formed by regioselective attack of the terminal car-
bon atom of the diene onto C-2 of the cyanochromone and
subsequent hydrolysis upon aqueous workup. Treatment
of an ethanol solution of crude 11 with triethylamine af-
forded the novel fluorinated 1-azaxanthone 12
(Scheme 8). This type of product is again not available by
direct fluorination. The transformation of 11 into 12 can
be explained by a domino ‘retro-Michael/nitrile-addition/
heterocyclization’ reaction.17

Scheme 3 Synthesis of 4. Reagents and conditions: (i) CH2Cl2,
–78 °C → 20 °C; (ii) NaHCO3, H2O.
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Scheme 4 Synthesis of 5. Reagents and conditions: (i) TMSOTf
(0.2 equiv), CH2Cl2, –78 °C → 20 °C; (ii) NaHCO3, H2O.
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Scheme 5 Synthesis of butenolides 6a,b. Reagents and conditions:
(i) TMSOTf (0.3 equiv), CH2Cl2, –78 °C → 20 °C, 14 h.
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Scheme 6 Synthesis of 2-alkylidenetetrahydrofuran 7. Reagents
and conditions: (i) TiCl4 (2.0 equiv), CH2Cl2, –78 °C → 20 °C.

OTMS

OEt

iF

3a

7 48%

O
F

O
OEt

O

Cl
+

Cl

TMSO

Scheme 7 Synthesis of 9. Reagents and conditions: (i) TMSOTf
(0.5 equiv), CH2Cl2, –78 °C → 20 °C; (ii) DBU (2.0 equiv), THF,
20 °C.
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Scheme 8 Synthesis of 1-azaxanthone 12. Reagents and conditions:
(i) 1. 3-cyanochromone, TMSOTf, 1 h, 20 °C; 2. 3a, CH2Cl2, 0 °C →
20 °C, 12 h; 3. HCl (10%); (ii) 1. Et3N, EtOH, 20 °C, 12 h; 2. HCl
(1 M).
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The [4+2]-cycloaddition18 of 1,3-bis(trimethylsiloxy)-
1,3-butadiene 3a with dimethyl allene-1,3-dicarboxylate
afforded the novel fluorinated 2,4-dihydroxyhomophtha-
late 13 in good yield and with very good regioselectivity
(Scheme 9). Product 13 is not available by direct fluorina-
tion of the corresponding homophthalate because of the
formation of a regioisomeric mixture. The structure of 13
was independently confirmed by X-ray crystal structure
analysis (Figure 1).19

The hetero-Diels–Alder reaction20 of 1,3-bis(silyloxy)-
1,3-butadiene 3a with phenylsulfonylcyanide afforded the
fluorinated 4-hydroxy-2-(arylsulfonyl)pyridine 14
(Scheme 10).21 This type of product is again not available
by direct fluorination.

In conclusion, we have reported a building block strategy
for the synthesis of novel organofluorine compounds
based on reactions of 2-fluoro-1,3-bis(trimethylsilyloxy)-
1,3-butadienes, the first fluorinated 1,3-bis(silyl enol
ethers). The products are not available by direct fluorina-
tion reactions.
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