Generation of Silylethynolates via C–Si Bond Cleavage of Disilylketenes Induced by *t*-BuOK¹

Masato Ito,* Eiji Shirakawa, Hidemasa Takaya²

Department of Material Chemistry, Graduate School of Engineering, Kyoto University, Yoshida, Sakyo-ku, Kyoto, 606-8501, Japan E-mail: mito@o.cc.titech.ac.jp

Received 24 May 2002

Abstract: Disilylketenes undergo selective mono-desilylation upon treatment of *t*-BuOK in the presence of HMPA. The resulting silylethynolates are convertible to other disilylketenes in good yields. The intermediary silylethynolate was analyzed by NMR and IR spectroscopy.

Key words: disilylketene, silylethynolate, potassium *t*-butoxide, carbon-silicon bond cleavage, HMPA

Recently we reported that α, α -disilylenolate intermediates derived from disilylketenes and organolithiums subsequently undergo Peterson-type elimination to give silylacetylenes (Scheme 1).³

This finding suggests that disilylketenes may be synthetically equivalent to $SiC \equiv C^+$ in organic synthesis.

Si = triorganosily

Scheme 1

In the course of our synthetic exploitation of disilylketenes, we have now found that disilylketenes (1) undergo nucleophilic desilylation with organolithium reagents at the ketene sp^2 -carbon [Scheme 2, path (b)] as well as nucleophilic addition to the ketene sp-carbon [Scheme 2, path (a)]. The selective nucleophilic desilylation from 1 may provide a new method for the generation of silylethynolate intermediates,^{4,5} which should be useful for organic synthesis.

First, we examined the reaction of bis(trimethylsilyl)ketene (**1a**)⁶ with various nucleophilic reagents in the presence of HMPA^{7.8} (Scheme 3). The reaction was carried out by adding organolithiums to a solution of equimolar amounts of **1a** and HMPA in THF at 0 °C. After stirring for 1 h, the reaction mixture was quenched by *t*-BuMe₂SiOTf at 0 °C and then stirred at r.t. for 2 h. Then, the product was isolated by an aqueous work-up and then purified by preparative HPLC. The use of PhLi as a nucleophile resulted in the formation of **1b**^{5a} (39% yield) in addition to **2** (R = Ph, 51% yield).^{9a} While the chemose-

Synlett 2002, No. 8, Print: 30 07 2002.

Art Id.1437-2096,E;2002,0,08,1329,1331,ftx,en;U00702ST.pdf. © Georg Thieme Verlag Stuttgart · New York

ISSN 0936-5214

Scheme 2

lectivity was not noticeably changed in the case of MeLi [1b, 32% and 2 (R = Me), 53% yield],^{9b} the formation of 2 (R = t-Bu) was completely suppressed in the case of t-BuLi, although the yield of 1b was modest (47%). Finally, we found that the use of t-BuOK instead of organolithiums improved the yield remarkably (1b, 84%) with excellent chemoselectivity. These results clearly show that t-BuOK prefers the silicon center rather than the ketene carbonyl of 1a in the initial step to form a potassium silylethynolate selectively.¹⁰ The synthesis of various disilylketenes by means of t-BuOK is summarized in Table 1.¹¹ The silvlethynolate derived from 1a and t-BuOK upon treatment with organosilyl halides such as i-Pr₃SiCl, PhMe₂SiCl, Ph₂MeSiCl, and Ph₃SiCl gave unsymmetrical disilylketenes 1c-f in good yields (entry 2-5). When unsymmetrical disilylketenes 1b, 1e, or 1f bearing at least one Me₃Si group were employed, the less bulky Me₃Si group was selectively substituted by other R₃Si group to afford the corresponding unsymmetrical disilylketenes 1g-k in good yields (entry 6, 7, 9-11). However, the reaction of unsymmetrical disilylketene 1d gave a mixture of **1h** and **1b** (47% and 32%, respectively) upon treatment with *t*-BuMe₂SiOTf, probably because there is no remarkable difference in the steric congestion between two silicon groups in 1d (entry 8).

Table 1 Preparation of Various Disilylketenes using t-BuOK^a

Entry	Substrate	R ₃ SiX	Product	Yield (%)	
1	1a	t-BuMe ₂ SiOTf	1b	84	
2	1 a	<i>i</i> -Pr ₃ SiCl	1c ^{5a}	60	
3	1a	PhMe ₂ SiCl	$\mathbf{1d}^{12a}$	71	
4	1a	Ph ₂ MeSiCl	1e ^{3,13a,b}	75	
5	1a	Ph ₃ SiCl	1f ^{13b}	76	
6	1b	t-BuMe ₂ SiOTf	1g ^{5b,13c}	75	
7	1b	PhMe ₂ SiCl	1h ^{5b}	67	
8	1d	t-BuMe ₂ SiOTf	1h (1b)	47 (32) ^b	
9	1e	t-BuMe ₂ SiOTf	1i ^{5b}	79	
10	1f	t-BuMe ₂ SiOTf	1j ^{5b}	81	
11	1f	Ph ₃ SiCl	1k ^{12b}	94	

^a Reaction conditions; substrate: *t*-BuOK:HMPA:R₃SiX = 1:1:1:1, [substrate] = 0.33 M in THF, 0 °C for 1 h.

^b *t*-BuOSiMe₂Ph^{13d} was obtained as a by-product in 31% yield.

The present reaction was not applicable to monosilylketenes. For instance, the reaction of *n*-hexyl(trimethylsilyl)ketene^{13e} with *t*-BuOK in the presence of HMPA gave a complex mixture including *t*-butyl octanoate. This may be attributable to the difference of thermodynamic stability between alkynolates and silylethynolates. In other words, the interaction of the Si–C σ^* orbital with the π orbital in silylethynolates should stabilize their negative charge,¹⁴ inducing better leaving ability than in the case of alkynolates.

To gain deeper insight into the structure of the silylethynolate, the mixture of 1a and t-BuOK in THF-HMPA was concentrated in vacuo and the resulting red residue was analyzed by spectroscopic methods. Its ¹³C NMR spectrum in d_8 -THF showed two signals at 132.8 and 33.4 ppm, in addition to 38.1 and 5.2 ppm which are assignable to HMPA (${}^{3}J_{CP} = 3.7 \text{ Hz}$) and Me₃Si group, respectively. Although the absence of any characteristic ketene carbonyl signal above 160 ppm may support its structure as 'Oynolate, Me₃SiC≡C–OK', the observed signals do not fall within the typical range for the acetylenic ethers (see Table 2). Moreover, IR spectra (d_8 -THF) showed a strong absorption at 2076 cm⁻¹, which is typical for ketenes (see Table 2). Therefore, the contribution from the 'C-ynolate, Me₃Si(K)C=C=O' structure cannot be ruled out. Currently we are trying to get a suitable crystalline for this material, to determine its structural property in the solid state via single-crystal X-ray diffraction analysis.

In conclusion, we have developed the *t*-BuOK-induced C–Si bond cleavage reaction of disilylketenes.¹⁵ Our method may provide a general method for the generation of silylethynolates efficiently from disilylketenes. Its operational simplicity based on the remarkable stability of

compound	¹³ C NMR (CDCl ₃)		IR	Ref.	
R _(2-n)	$C^{\beta}C^{\alpha}OR_n$	C ^α (ppm)	C ^β (ppm)	v_{CCO} (cm ⁻¹)	
Ph ₂	C=C=0	201.2	47.6	2090	13f
$(n-C_6H_{13})(Me_3Si)$	C=C=0	182.6	13.0	2090	13e
(Me ₃ Si) ₂	C=C=O	166.8	1.7	2050	13f
(Me ₃ Si)(Me ₃ Sn)	C=C=O	164.4	-5.8	2080	8a,13f
(Me ₃ Sn) ₂	C=C=O	161.7	-13.9	2040– 2060	8a,13f
t-BuMe ₂ Si	C≡C–OSiMe ₂ t-Bu	ı —	_	2185	13c
<i>t</i> -BuMe ₂ Si	C≡C–Ot-Bu	106.7	37.9	2180	13g
<i>t</i> -Bu	C≡C–OSiMe ₂ t-Bu	85.5	40.3	2270	13h
<i>n</i> -Bu	C≡C–Ot-Bu	85.6	40.1	2280	13i

the precursors should be beneficial to the development of the potential utility of silylethynolates in organic synthesis.

Acknowledgement

The author (M.I.) appreciates Research Fellowships of the Japan Society for the Promotion of Science for Young Scientists and thanks Professor Shigehiro Yamaguchi (Kyoto University) for valuable discussions.

References

- Presented in part at the 70th Annual Meeting of the Chemical Society of Japan, Tokyo, March 1996, Abstr. 2J392.
- (2) Deceased Oct. 4, 1995. Address all correspondence to Dr. Masato Ito, Department of Applied Chemistry, Graduate School of Science and Engineering, Tokyo Institute of Technology, 2-12-1 O-okayama, Meguro-ku, Tokyo 152-8552, Japan; E-mail: mito@o.cc.titech.ac.jp.
- (3) Ito, M.; Shirakawa, E.; Takaya, H. Synlett 1996, 635.
- (4) For reviews on the chemistry of ynolates, see: (a) Stang, P. J.; Zhdankin, V. V. In *The Chemistry of Triple-bonded Functional Groups*; Patai, S., Ed.; John Wiley & Sons: Chichester, **1994**, 1136–1145. (b) Shindo, M. *Chem. Soc. Rev.* **1998**, *27*, 367.
- (5) (a) Kai, H.; Iwamoto, K.; Chatani, N.; Murai, S. J. Am. Chem. Soc. 1996, 118, 7634. (b) Akai, S.; Kitagaki, S.; Naka, T.; Yamamoto, K.; Tsuzuki, Y.; Matsumoto, K.; Kita, Y. J. Chem. Soc., Perkin Trans. 1 1996, 1705. (c) Iwamoto, K.; Kojima, M.; Chatani, N.; Murai, S. J. Org. Chem. 2001, 66, 169.
- (6) (a) Sakurai, H.; Shirahata, A.; Sasaki, K.; Hosomi, A. Synthesis 1979, 740. (b) Efimova, I. V.; Kazankova, M. A.; Lutsenko, I. F. Zh. Obshch. Khim. 1985, 55, 1647.
- (7) Recently, Ishikawa and co-workers reported (Me₃Si)₃SiLi undergoes nucleophilic attack onto the silicon center of **1a** in THF, but their attempts to trap the resulting silylethynolate were unsuccesful: Naka, A.; Ohshita, J.; Kunai, A.; Lee, M. E.; Ishikawa, M. J. Organomet. Chem. **1999**, *574*, 50.

- (8) (a) *n*-BuLi is known to react with 1a at the ketene *sp*-carbon in the absence of HMPA: Ponomarev, S. V.; rman, M. B.; Lebedev, S. A.; Pechurina, S. Y.; Lutsenko, I. F. *Zh. Obsh. Khim.* 1971, *41*, 127. (b) Also see: Woodbury, R. P.; Long, N. R.; Rathke, M. W. J. Org. Chem. 1978, *43*, 376. (c) For the reaction of phosphorous ylides with 1a or 1b leading to *mono*-silylated allenes, see: Kita, Y.; Tsuzuki, Y.; Kitagaki, S.; Akai, S. Chem. Pharm. Bull. 1994, *42*, 233.
- (9) Analytical data for **2**: (a) 1,1-Bis(trimethylsilyl)-2-[(1,1-dimethylethyl)dimethylsilyl]oxy-2-phenylethene (**2**, R = Ph). ¹H NMR (CDCl₃) δ : -0.31 (s, 9 H), -0.29 (s, 6 H), 0.25 (s, 9 H), 0.86 (s, 9 H), 7.18–7.29 (m, 5 H); ¹³C NMR (CDCl₃) δ : -3.1, 2.1, 2.4, 18.6, 26.3, 109.9, 127.8, 128.0, 129.6, 142.0, 165.9. Anal. Calcd for C₂₀H₃₈OSi₃: C, 63.42; H, 10.11. Found: C, 63.31; H, 10.35. (b) 1,1-Bis(trimethyl-silyl)-2-[(1,1-dimethylethyl)dimethylsilyl] oxy-1-propene (**2**, R = Me). This compound was not obtained in pure form and thus only ¹H and ¹³C NMR spectral data were shown. ¹H NMR (CDCl₃) δ : 0.12 (s, 9 H), 0.14 (s, 9 H), 0.20 (s, 6 H), 0.95 (s, 9 H), 2.03 (s, 3 H); ¹³C NMR (CDCl₃) δ : -2.3, 0.1, 2.7, 2.9, 19.1, 26.5, 107.1, 164.5.
- (10) Rathke's report on the isolation of **1a** by warming a THF solution of lithio *t*-butyl bis(trimethylsilyl)acetate to 25 °C may indicate that the eliminated *t*-BuOLi does not undergo C–Si bond cleavage of **1a** under their condition: Sullivan, D. F.; Woodbury, R. P.; Rathke, M. W. *J. Org. Chem.* **1977**, *42*, 2038.
- (11) (a) General Procedure for the Preparation of Disilylketenes using t-BuOK: Preparation of [(1,1dimethylethyl)dimethylsilyl](trimethylsilyl)ketene(1b) from 1a is representative. Disilyllketene 1a (296.5 mg, 1.59 mmol) was dissolved in THF (1.6 mL) and HMPA (0.28 mL, 1.61 mmol). To the resulting yellow solution was added a solution of t-BuOK (180.0 mg, 1.60 mmol) in THF (3.2 mL) at 0 °C. The mixture was stirred for 1 h at the same temperature and quenched by t-BuMeSiOTf (0.37 mL, 1.61 mmol). After stirring the resulting solution for 2 h at room temperature, the reaction mixture was diluted with pentane and washed with water. Then the organic layer was dried by Na₂SO₄ and filtered through Florisil. Evaporation of the solvent followed by silica-gel chromatography (Wakogel C-200) afforded 1b as a colorless oil (305.4 mg, 84% yield). (b) We were unable to detect the formation of any O-silylated product (silyl silylethynyl ether) under these

conditions. See ref.^{13c}. (c) The use of carbon electrophiles (MeI, Me_2SO_4 , Me_3OBF_4 , or PhCHO) instead of R_3SiX resulted in the formation of intractable mixtures under similar conditions.

- (12) Analytical data for new disilylketenes (silicon-attached quarternary carbon was not observed in ¹³C NMR spectra): (a) (Dimethylphenylsilyl)(trimethylsilyl)ketene(**1d**). ¹H NMR (CDCl₃) δ : 0.14 (s, 9 H), 0.52 (s, 6 H), 7.40–7.43 (m, 3 H), 7.59–7.63 (m, 2 H); ¹³C NMR (CDCl₃) δ : –0.2, 1.2, 127.8, 129.4, 133.6, 138.3, 166.9; IR(neat) 2084 cm⁻¹ (CCO); MS (70 eV) *m*/*z* 248 (M⁺); bp 62–70 °C (0.05 mmHg). Anal. Calcd for C₁₃H₂₀OSi₂: C, 62.84; H, 8.11. Found: C, 63.10; H, 8.28. (b) Bis(triphenylsilyl)ketene(**1k**). ¹H NMR (CDCl₃) δ : 7.21-7.49 (m, 30 H); ¹³C NMR (CDCl₃) δ : 127.7, 127.8, 129.7, 129.8, 133.7, 135.2, 135.4, 135.9, 166.2; IR(nujol) 2080 cm⁻¹ (CCO); MS (70 eV) *m*/*z* 558 (M⁺); mp 165-166 °C. Anal. Calcd for C₃₈H₃₀OSi₂: C, 81.67; H, 5.41. Found: C, 81.40; H, 5.32.
- (13) (a) Ponomarev, S. V.; Zolotareva, A. S.; Ezhov, R. N.; Kuznetsov, Y. V.; Petrosyan, V. S. *Russ. Chem. Bull.* 2001, 50, 1093. (b) Ponomarev, S. V.; Zolotareva, A. S.; Leont'ev, A. S.; Kuznetsov, Y. V.; Petrosyan, V. S. *Russ. Chem. Bull.* 2001, 50, 1088. (c) Groh, B. L.; Magrum, G. R.; Barton, T. J. J. Am. Chem. Soc. 1987, 109, 7568. (d) Buncel, E.; Edlund, T. K. V. U. J. Organomet. Chem. 1992, 437, 85. (e) Pons, J.-M.; Kocienski, P. *Tetrahedron Lett.* 1989, 30, 1833. (f) Grishin, Y. K.; Ponomarev, S. V.; Lebedev, S. A. *Zh. Org. Khim.* 1974, 10, 404. (g) Valent', E.; Perics, M. A.; Serratosa, F. J. Org. Chem. 1990, 55, 395. (h) Stang, P. J.; Roberts, K. A. J. Am. Chem. Soc. 1986, 108, 7125. (i) Pericàs, M. A.; Serratosa, F.; Valent', E. *Tetrahedron* 1987, 43, 2311.
- (14) Bassindale, A. R.; Glynn, S. J.; Taylor, P. G. In *The Chemistry of Organic Silicon Compounds*, Part 1, Vol. 2; Rappoport, Z.; Apeloig, Y., Eds.; John Wiley & Sons: Chichester, **1998**, Chap. 7.
- (15) (a) Examples for a related alkali metal alkoxide-induced C– Si bond cleavage reaction: Sakurai, H.; Nishiwaki, K.; Kira, M. *Tetrahedron Lett.* **1973**, *42*, 4193; see also ref. 13d.
 (b) We suppose that HMPA may coordinate onto the smaller silicon center of the disilylketene to form a penta-coordinate silicate, and facilitate the alkoxide-induced Si–C bond cleavage.