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Chirally substituted cyclopropane frameworks are widely
found in naturally occurring organic compounds and phar-
maceuticals. Their stereoselective and efficient synthesis is
hence an important issue in organic synthesis.[1] Herein we
report a highly diastereo- and enantioselective copper(I)-
catalyzed reaction that converts g-silylated allylic carbonates
(1) and a diboron species (2) into previously unreported,
optically active B,Si bifunctional cyclopropane derivatives
(B= (pin)B; Si= Me3Si 3a, PhMe2Si 3b, BnMe2Si 3c,
Scheme 1).[2,3] B,Si bifunctional cyclopropane (1S,2S)-3c was
derivatized into (1S,2R)-2-phenyl-1-cyclopropanol by
Suzuki–Miyaura coupling and Tamao oxidation.

During the course of our studies on the synthesis of
optically active allylboronates using copper(I)-catalyzed
reactions,[4] which involve the nucleophilic g-substitution of
allylic carbonates with a borylcopper(I) intermediate
(Scheme 2),[5] we encountered a drastic product switch from
allylboronates to cyclopropylboronates when allylic carbo-
nates with a g-silicon substituent were employed instead of
alkyl-substituted ones. Thus, the reaction of silylated carbon-
ate (Z)-1a with bis(pinacolato)diboron (2)[6] in the presence
of an achiral copper(I) xantphos catalyst (3 mol% Cu) gave 1-
(trimethylsilyl)cyclopropan-2-ylboronate 3a[7] with high trans
selectivity (trans/cis 99:1) in 96% yield after 1 h (Scheme 1).

Only a trace amount of the corresponding allylboronate (4a)
was detected. Notably, the cyclopropane formation from silyl-
substituted substrate (Z)-1a is significantly faster than the
allylboron formation from alkyl-substituted ones,[4] implying
an activating effect of the silyl group.

The E or Z configuration of the substrates greatly
influenced the reaction rate, chemoselectivity (3a/4a), and
trans/cis selectivity. Reactions of (E)-1a in 1,3-dimethyl-2-
imidazolidinone (DMI) required a higher catalyst loading
(10 mol%) and a longer reaction time (29 h) than those of
(Z)-1a, producing considerable amounts of cis-3a (8%) and
allylboronate 4a (17%) along with trans-3a (52%, trans/cis
87:13, Scheme 3).

The cyclopropane formation can be explained by assum-
ing a reversal of the regioselectivity in the addition of a
borylcopper(I) intermediate, which is formed through the
reaction between an alkoxycopper(I) complex and a diboron
derivative, across the C�C double bond of the g-silylated
allylic carbonate.[8] This selectivity is driven by an interaction
between the s[C(g)�Cu] and the s*[Si�C(Si)] orbitals in the
addition product (A, Scheme 4).[9] Subsequent intramolecular

Scheme 1. Cyclopropane formation with (Z)-1a in the presence of
copper(I) xantphos catalyst and diboron derivative 2. pin=pinacolato,
xantphos=4,5-bis(diphenylphosphino)-9,9-dimethylxanthene,
DMI=1,3-dimethyl-2-imidazolidinone.

Scheme 2. Synthesis of allylboronates through copper(I)-catalyzed
substitution of allylic carbonates with a diboron derivative.[4]

Scheme 3. Cyclopropane and allylboron formation with (E)-1a in the
presence of copper(I) xantphos catalyst and diboron derivative 2.

Scheme 4. Possible pathways for cyclopropane and allylboron forma-
tion with (Z)- and (E)-1a. Si =Me3Si, B =B(pin), Cu = (xantphos)Cu
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nucleophilic substitution (B) between the C(g)�Cu and
C(a)�O bonds would afford trans-3a with retention of the
configuration at the g carbon atom.[10] In the case of (E)-1a,
the lower reactivity, chemoselectivity, and trans/cis selectivity
can be explained as follows: The corresponding nucleophilic
substitution that forms the addition product (C) with reten-
tion of the C(g) configuration that leads to cis-3awould suffer
from steric repulsion between the boryl and silyl groups (D)
and hence become a minor pathway. Instead, the intra-
molecular nucleophilic substitution with inversion of the C(g)
configuration (E), which demands a pseudo-linear Cu-C(g)-
C(a)-O arrangement, would proceed as a major pathway,
affording trans-3a. Since the cyclopropane formation from
(E)-1a should be slower than that from (Z)-1a, it would be
reasonable that the route to give the allylboron compound
(4a) also competes with cyclopropane formation.[11]

Next, we examined enantioselective reactions. Various
copper(I) phosphine catalysts prepared in situ by mixing
Cu(OtBu) (5 mol%) and chiral ligands (5.5 mol%) were
examined for catalytic activity and enantioselectivity in the
reaction of (Z)-1a and 2 in THF at 30 8C (Table 1, entries 1–

6). The reaction with the (R,R)-quinoxP* ligand[12] was
completed in 8 h and gave optically active trans-cyclopropane
(1S,2S)-3a with 98% ee in 99% yield (Table 1, entry 1). The
axially chiral ligand (R)-segphos[13] was also effective for this
reaction, showing slightly lower enantioselectivity (94% ee,
Table 1, entry 2). The catalyst that was prepared from (R)-tol-
binap showed a significantly decreased enantioselectivity
(Table 1, entry 3). The reactions with Me-duphos, diop, and
josiphos were faster than those with (R,R)-quinoxP* and (R)-
segphos, but they were less enantioselective (Table 1,
entries 4–6). Optically active cyclopropylboronates with
dimethylphenylsilyl [(S)-3b] or benzyldimethylsilyl [(S)-3c]
groups, which can be converted more easily into other
functional groups than the trimethylsilyl group, were obtain-
able in good yields through the reaction with the copper(I)
(R,R)-quinoxP* or the copper(I) (R)-segphos catalysts
(Table 1, entries 7–10). For these substrates, (R)-segphos
(Table 1, entries 8 and 10) was superior to (R,R)-quinoxP*
(Table 1, entries 7 and 9) in terms of enantioselectivity and 3/4
ratio. The reaction of (Z)-1a was also successful on a gram
scale (Table 1, entry 11).[14]

The stereochemical outcome of the copper(I)-catalyzed
reactions of (Z)-1 can be explained by comparing the
transition states during the addition of the Cu�B bond
across the C�C double bond (Scheme 5). Favored transition

state TS1 is free from steric repulsion between the substitu-
ents of (Z)-1 and the tBu groups of the quinoxP* ligand, thus
delivering (1S,2S)-3 as a major enantiomer. In contrast, less
favored TS2 is severely destabilized by steric repulsion
between the substituents of (Z)-1 and one of the ligand tBu
groups. The rigidity of the four-center diastereomeric tran-
sition states should be responsible for the highly efficient
enantiofacial discrimination.

Stepwise, stereoselective transformation of the boron and
silicon functionalities allows for making use of the bifunc-
tional cyclopropane derivatives as building blocks for the
synthesis of cyclopropane-containing chiral compounds. Pre-
liminary results of studies toward this end are illustrated in
Scheme 6. Suzuki–Miyaura coupling of (1S,2S)-3c with iodo-
benzene afforded trans-2-phenyl-1-silylcyclopropane
[(1S,2R)-5] in 83% yield with high stereoselectivity.[15] Sub-
sequent Tamao oxidation[16] of (1S,2R)-5 gave the corre-
sponding alcohol (1S,2R)-6[17] in 73% yield without decrease
in the enantiomeric and diastereomeric purity of the product.

The regioselectivity of copper(I)-catalyzed allylic substi-
tutions is generally determined by a- versus g-selectivity.[18]

Table 1: Enantioselective reaction of 1a–c with 2 catalyzed by copper(I)
complexes with various chiral ligands.[a]

Entry R3Si Carbonate Ligand t Yield [%][b] ee
[h] 3 4 [%][c]

1 Me3Si (Z)-1a (R,R)-quinoxP* 8 99 <1 98
2 Me3Si (Z)-1a (R)-segphos 8 94 2 94
3 Me3Si (Z)-1a (R)-tol-binap 8 75 <1 90
4 Me3Si (Z)-1a (R,R)-Me-duphos 1 97 <1 82
5 Me3Si (Z)-1a (S,S)-diop 1 98 <1 13[d]

6 Me3Si (Z)-1a (R)-(S)-josiphos 2 93 3 0
7 PhMe2Si (Z)-1b (R,R)-quinoxP* 8 91 4 91[e]

8[f ] PhMe2Si (Z)-1b (R)-segphos 7 86[g] <1 97[e]

9 BnMe2Si (Z)-1c (R,R)-quinoxP* 8 88 9 92[e]

10[f ] BnMe2Si (Z)-1c (R)-segphos 8 83[g] 2 94[e]

11[h] Me3Si (Z)-1a (R)-segphos 24 86[g] 2 96

[a] Conditions: Cu(OtBu) (5 mol%, 0.0125 mmol), ligand (5.5 mol%,
0.014 mmol), 1 (0.25 mmol), 2 (0.5 mmol, 2.0 equiv) in THF (0.125 mL).
[b] Yield was determined by GC unless otherwise noted. In all reactions,
yields of cis-3 were less than 1%. [c] The ee value of 3a was determined by
chiral GC analysis. [d] (1R,2R)-3a was the major isomer. [e] The ee values
of 3b and 3c were determined by chiral HPLC analysis. [f ] Reaction with
1.0 mmol 1b or 1c and 2.2 mmol 2. [g] Yield of isolated product.
[h] Reaction with 5.0 mmol 1a with 10.5 mmol 2. Bn=benzyl, tol-
binap=2,2’-bis(di-p-tolylphosphino)-1,1’-binaphthyl, Me-duphos=1,2-
bis[(2R,5R)-2,5-dimethylphospholano]benzene, diop=1,4-bis(diphenyl-
phosphino)-1,4-dideoxy-2,3-O-isopropylidene-l-threitol, josiphos=2-
[(diphenylphosphino)ferrocenyl]ethyldicyclohexylphosphine.

Scheme 5. Proposed stereodiscriminating transition-state models.
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The present reaction represents exceptional regioselectivity:
Formal nucleophilic attack occurs at the b-position of the
leaving group in the allylic electrophile. Further studies on the
application of the bifunctional cyclopropane derivatives are
currently underway.
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