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Lewis Acid-catalyzed Reductive Etherification of Carbonyl Compounds with 
Alkoxyhydrosilanes1
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Abstract: The TMSI-catalyzed reaction of aldehydes and ketones
with alkoxydimethylsilanes gave unsymmetrical ethers in good to
high yields. This reductive etherification is superior to the conven-
tional method using two kinds of silicon reagents in terms of atom
efficiency and ease of operation.
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Reductive etherification of aldehydes and ketones, that is,
reduction of in situ-generated acetals and oxocarbenium
ions provides a convenient route to a variety of ethers.2–6

Particularly, the Lewis acid-catalyzed reaction with
alkoxysilanes and hydrosilanes is valuable for the highly
efficient synthesis of unsymmetrical ethers.6 In the course
of our studies on tandem reactions using bifunctional sili-
con reagents,7,8 we have recently reported the Lewis acid-
catalyzed reductive amination of aldehydes and ketones
with aminohydrosilanes.9 Thus, our interest was focused
on reductive etherification with alkoxyhydrosilanes. Such
a tandem reaction is expected to be advantageous in terms
of atom efficiency and ease of operation in comparison
with the conventional method using two kinds of silicon
reagents.6 We herein disclose that alkoxydimethylsilanes
(ROSiHMe2) efficiently work for the Lewis acid-cata-
lyzed reductive etherification of various aldehydes and
ketones.

Initially, the reaction of benzaldehyde with butoxydime-
thylsilane 1a was run to screen Lewis acids (Table 1).10

The use of TiCl4, which is effective in the reductive ami-
nation with aminodimethylsilanes,9 gave the desired ether
2a in moderate yield along with dibenzyl ether and benzyl
alcohol (entry 1).11 Lowering the reaction temperature
completely suppressed the formation of these by-products
to improve the yield of 2a (entry 2). The ZnI2-catalyzed
reaction with 1a resulted in selective formation of benzyl
alcohol (entry 3). In contrast, 5 mol% of TMSI, TMSOTf,
and Ph3CClO4 effectively promoted the reductive etherifi-
cation at 0 °C to room temperature to give 2a in high
yields (entries 4–6).

As shown in Table 2, the TMSI-catalyzed reductive ether-
ification with 1 was applicable to various aldehydes and
ketones.12 In the reaction of substituted benzaldehydes,

the para substituent affected the reactivity to 1a. Introduc-
tion of an electron-donating group decelerated the reduc-
tive etherification (entries 2 and 3), while 4-
halobenzaldehydes as well as benzaldehyde exhibited
high reactivity (entries 4 and 5). The reactions of 4-nitro-
and 4-cyanobenzaldehyde resulted in comparably low
yields of 2 (entries 7 and 8), which is probably due to de-
activation of the Lewis acid by the polar functionalities.
The unsatisfactory yields could be improved by increased
amounts of 1a and TMSI (method B). Aromatic ketones
were much less reactive than aromatic aldehydes (entries
9 and 10). Particularly, the reductive etherification of ben-
zophenone was quite slow even under the conditions of
method B. Cinnamaldehyde smoothly reacted with 1a to
give 2 in high yield (entry 11). In contrast, the reaction of
�,�-unsaturated ketones such as (E)-4-phenyl-3-buten-2-
one and 2-cyclohexen-1-one did not form the desired allyl
ethers. Aliphatic aldehydes and ketones were not as reac-
tive as benzaldehyde, but they could be efficiently con-
verted into 2 by method B (entries 12–14).

We also examined the reaction of other alkoxydimethylsi-
lanes 1b–d. As a result, 1b and 1c were successfully uti-
lized for the TMSI-catalyzed reductive etherification
(entries 15–18). Unfortunately, the etherification with 1d
was too slow to attain satisfactory results (entries 19 and
20). In entry 20, the low reactivity caused reductive

Table 1 Reductive Etherification of Benzaldehyde with 1aa

Entry LA (equiv) Time (h) Yield (%)

2a Bn2O BnOH

1 TiCl4 (0.2) 16 64 13 20

2b TiCl4 (0.2) 96 91 < 1 0

3 ZnI2 (0.2) 70 12 4 71

4 TMSI (0.05) 2 quant. 0 0

5 TMSOTf (0.05) 2 94 0 0

6 Ph3CClO4 (0.05) 2 97 0 0

a The reactions were carried out with 1.2 (entries 1–3) or 1.1 equiv 
(entries 4–6) of 1a. For general procedure, see ref.12

b At –50 °C.

PhCHO BuOSiHMe2 BnOBu Bn2O BnOH+
cat. Lewis acid

CH2Cl2, 0 °C to rt1a 2a
+ +
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dimerization to di(3-phenylpropyl) ether as a side reac-
tion.

Judging from the report by Olah et al.,6b the present reduc-
tive etherification would pass through nucleophilic attack
of the alkoxy group of 1 or an alkoxysilane arising from 1
and the subsequent reduction with a hydride species (path
a in Scheme 1). Another possible mechanism is that the
substrate undergoes hydride reduction in the initial step,
then the resultant silyl ether 4 is converted into 2 by nu-
cleophilic substitution of the alkoxy group (path b). To ex-
amine the latter possibility, dialkoxysilane 5 was prepared
from dimethyldichlorosilane and subjected to a catalytic

amount of TMSI (Scheme 2). As a result, the expected
ether 2a was not obtained at all. The reaction of 5 was car-
ried out in the presence of an equimolar amount of 1a, but
it resulted in no formation of 2a again. Thus path b is un-
likely in the present reductive etherification.

We further performed the TMSI-catalyzed reaction of
benzaldehyde with an equimolar mixture of 1a and deute-
riosilane 1e to gain mechanistic insight into the reaction
(Scheme 3). GC-MS analysis of the reaction mixture re-
vealed that the reductive etherification formed all of the
four possible benzyl ethers with no selectivity
(Scheme 3). This result shows that a hydrogen atom and

Table 2 Reductive Etherification of Aldehydes and Ketonesa

Entry Carbonyl Compound 1 Methoda Time Yield

R1 R2 (h) (%)

1 Ph H 1a A 2 quant.

2 4-MeC6H4 H 1a A (B) 18 (2) 84 (88)

3 4-MeOC6H4 H 1a A (B) 18 (12) 65 (67)

4 4-ClC6H4 H 1a A 2 96

5 4-BrC6H4 H 1a A 2 98

6 4-MeO2CC6H4 H 1a A 12 (2) 90 (90)

7 4-O2NC6H4 H 1a A (B) 18 (3) 69 (82)

8 4-NCC6H4 H 1a A (B) 36 (3) 74 (96)

9 Ph Me 1a A (B) 18 (18) 24 (73)

10 Ph Ph 1a B 24 21

11 (E)-PhCH=CH H 1a A 3 88

12 Ph(CH2)2 H 1a A (B) 18 (2) 79 (95)

13 Ph(CH2)2 Me 1a A (B) 24 (2) 68 (96)

14 -(CH2)2CHt-Bu(CH2)2-
b 1a A (B) 18 (3) 85 (96)

15 Ph H 1b A 2 92

16 -(CH2)5-
c 1b A (B) 2 91 (94)

17 Ph H 1c A 2 quant.

18 Ph(CH2)2 H 1c A (B) 2 (2) 80 (85)

19 Ph H 1d A (B) 24 (24) 35 (45)

20 Ph(CH2)2 H 1d A (B) 24 (24) 41 (48)d

a Method A: 1 (1.1 equiv), TMSI (0.05 equiv). Method B: 1 (1.2 equiv), TMSI (0.2 equiv). For general procedure, see ref.12.
b 4-t-Butylcyclohexanone.
c Cyclohexanone.
d Di(3-phenylpropyl) ether was obtained in ca. 40% yield in both cases of methods A and B.

R1

O

R2 R1

OR

R2
ROSiHMe2+

cat. TMSI

CH2Cl2, 0 °C to rt
21a: R = Bu

1b: R = Ph(CH2)2
1c: R = c-Hex
1d: R = Bn
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an alkoxy group introduced into a substrate molecule by
the present reaction are not originated from the same mol-
ecule of 1. Accordingly, the reduction of 3 to 2 may pro-
ceed intermolecularly rather than by the action of an
internal hydride species.

Scheme 3

In summary, we have demonstrated that alkoxydimethyl-
silanes 1 work as bifunctional silicon reagents to enable
the Lewis acid-catalyzed reductive etherification of alde-
hydes and ketones. The present reaction is superior to the
conventional method using two kinds of silicon reagents
in terms of atom efficiency and ease of operation.
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CH2Cl2, 0 °C to rt, 2 h

TMSI (0.05 equiv)

+ + +

PhCHO : 1a : 1e = 1 : 0.55 : 0.55

1 : 1 : 1 : 1
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