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INTRODUCTION

Silicon is the basic material of modern microelec-
tronics. In addition, it is a key component in the fabri-
cation of sensors, micro- and nanoelectromechanical
systems, and other hybrid nanodevices. In this context,
the study of the influence of various processing steps on
its mechanical properties (Young’s modulus, hardness,
wear resistance, and others) is of special importance.

Gold doping is widely used to reduce the carrier
lifetime in silicon and, accordingly, to enhance the
speed of semiconductor devices [1]. Gold-doped sili-
con is the key material for high-sensitivity IR detectors
[2]. Its strength, however, is essentially unexplored.
Such studies are of high current interest because, in
subsequent steps of semiconductor device fabrication
(oxidation, diffusion, chip bonding, and others), silicon
wafers are exposed to thermal and mechanical influ-
ences, which give rise to buckling and microcracking of
the wafers. These processes reduce the yield of devices
to specification and are determined in large part by the
strength of the implanted wafers.

The objective of this work was to study the effect of
Au diffusion doping on the microhardness of silicon.

EXPERIMENTAL

Silicon wafers were prepared from Czochralski-
grown ingots. In our experiments, we used dislocation-
free KEF-20 (phosphorus-doped, nominal resistivity of
20 

 

Ω

 

 cm) silicon wafers differing in oxygen concentra-
tion (table). The interstitial oxygen concentration was
evaluated from the strength of the 1106-cm

 

–1

 

 absorp-
tion band. The dislocation density was determined
using selective etching and was within 

 

10

 

2

 

 cm

 

–2

 

 in all of
our samples.

Microhardness 

 

H

 

 was measured in the [100] direc-
tion by a standard technique using a PMT-3 tester fitted
with a square-pyramidal diamond indenter tip with an

apical angle of 136

 

°

 

. The indentation load was varied
from 0.5 to 2 N.

The choice of the load was dictated by two factors:
1. The indent depth must be sufficiently large to rule

out surface effects.
2. Indentation must produce no cracks.
At a 0.50-N load, the indent depth was 

 

~1

 

µ

 

m, which
minimized the effect of surface processing. At the high-
est load, the fraction of cracked indents, unsuitable for

 

H

 

 determination, was within 10%. In each experiment,
at least 50 indents were placed on the wafer surface. We
measured the two indent diagonals, and the average
was used to determine 

 

H

 

 [3].
The results were analyzed using statistical methods

[4]. The microhardness data were found to follow a nor-
mal (Gaussian) distribution. The uncertainty in our 

 

H

 

measurements was 2% (at a 95% confidence level).
As a gold diffusion source, we used a film produced

on the surface of a 2-mm-thick silicon wafer by chem-
ical deposition from a potassium dicyanoaurate solu-
tion. Diffusions were carried out in a hydrogen atmo-
sphere at 

 

925°

 

C over a period of 5 h. Next, the surface
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Effect of heat treatment at 925

 

°

 

C for 5 h on the interstitial
oxygen concentration in silicon

Sample 
no.

 

N

 

O

 

 

 

×

 

 10

 

–17

 

, cm

 

–3

 

N

 

Au

 

 

 

×

 

 10

 

–14

 

, cm

 

–3

 

as-pre-
pared heat-treated Au-diffused

1 6.9 6.9 6.9 3.1

2 8.9 8.2 9.8 5.3

3 9.6 5.9 4.0 7.0

4 10.1 4.0 2.8 9.5
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damage layer up to 100 

 

µ

 

m in thickness was ground
away, and the wafer surface was polished.

The gold concentration in the samples was deter-
mined by neutron activation analysis (table). A number
of samples (controls) were heat-treated under the same
conditions without gold diffusion. The Au impurity
concentration in those samples was insensitive to heat
treatment and was close to that in the as-prepared
wafers (

 

~5 

 

×

 

 10

 

12

 

 cm

 

–3

 

). The electroactive gold concen-
tration was inferred from Hall effect measurements by a
standard technique at temperatures from 78 to 300 K in dc
electric and magnetic fields [5].

RESULTS AND DISCUSSION

The microhardness of the as-grown silicon single
crystals was about 9.8 GPa (at a 1-N load) and
depended very little on the oxygen concentration in the
range 

 

N

 

O

 

 = (6.9–10.1) 

 

× 

 

10

 

17

 

 cm

 

–3

 

 (Fig. 1). The plots of
microhardness versus indentation load for all of our sam-
ples are typical of nonplastic (hard) crystals (Figs. 1, 2):
increasing the load from 0.5 to 1 N reduces the microhard-
ness; at higher loads, 

 

H

 

 varies insignificantly. According
to Gerasimov et al. [6], the increased hardness in the sur-
face layer of silicon single crystals is due to bond dimer-
ization on the semiconductor surface and the development
of surface microroughness.

Gold diffusion was found to reduce the microhard-
ness of the silicon single crystals (Fig. 2). The strength
loss was less pronounced at higher oxygen concentrations
(Fig. 2, curves 

 

2

 

, 

 

2

 

'

 

). At the same time, heat treatment at

 

925°

 

C for 5 h with no gold diffusion increased the micro-
hardness of control samples (Fig. 1, curves 

 

2

 

, 

 

2

 

'

 

). A similar
effect was observed earlier at lower annealing tempera-
tures, 

 

150–800°ë

 

 [7, 8]. The change in microhardness in
our experiments (2–5%) was smaller than that at 

 

800°

 

C

 

(~8%

 

 [8]) but exceeded that produced by low-temperature
(

 

150°ë

 

) annealing (1.5–2%) [7].

Heat treatment of control samples with interstitial
oxygen concentrations above 

 

8 

 

×

 

 10

 

17

 

 cm

 

–3

 

 led to active
oxygen precipitation (table) [9]. The process was sub-
stantially more effective at higher interstitial oxygen
concentrations: at 

 

N

 

O

 

 = 10.1 

 

×

 

 10

 

17

 

 cm

 

–3

 

, the fraction
of precipitated oxygen reached 

 

~75%

 

. At 

 

N

 

O

 

 = 6.9 

 

×

 

10

 

17

 

 cm

 

–3

 

, heat treatment had little or no effect on the
interstitial oxygen concentration (table). Note that, in the
case of active oxygen precipitation, the increase in 

 

H

 

 was
smaller (Fig. 1, curve 

 

2

 

'

 

). Thus, we are led to conclude that
oxygen precipitation reduces the microhardness of silicon.

The present experimental data can be interpreted as
follows: Heat treatment of single-crystal silicon near

 

900°

 

C leads to a transformation of 

 

Ç

 

-defects—aggre-
gates of silicon self-interstitials, Si

 

i

 

, stabilized by car-
bon atoms [10], which are capable of forming intersti-
tial-type point defects (and/or defect complexes),
thereby raising the strength of the crystal [11]. Heating
causes 

 

Ç-

 

defects to emit self-interstitials. The liberated
carbon atoms, which have a smaller covalent radius
(

 

0.77 

 

Å [11]) compared to Si atoms (

 

1.17 

 

Å [12]), com-
press the silicon lattice, thereby reducing the bond length
and, accordingly, raising the strength of the crystal. These
processes seem to be responsible for the observed influ-
ence of heat treatment on the hardness of silicon.

Oxygen impurities also have a significant effect on
the mechanical properties of single-crystal silicon.
Oxygen atoms in silicon are known [13] to impede dis-
location propagation and multiplication during defor-
mation and must, therefore, increase the strength of the
material. The hardening effect of interstitial oxygen is
also evidenced by the fact that the microhardness of
oxygen-free float-zone silicon is substantially (5–10%)
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Fig. 1.

 

 Microhardness as a function of indentation load for
(

 

1

 

, 

 

1

 

'

 

) as-prepared and (

 

2

 

, 

 

2

 

'

 

) heat-treated silicon wafers at
oxygen concentrations of (

 

1

 

, 

 

2

 

) 6.9 

 

×

 

 10

 

17

 

 and (

 

1

 

, 

 

2

 

) 

 

10.1 
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Fig. 2.

 

 Microhardness as a function of indentation load for
(

 

1

 

, 

 

1

 

'

 

) as-prepared and (

 

2,

 

 

 

2

 

'

 

) gold-diffused silicon wafers at
oxygen concentrations of (

 

1

 

, 

 

2

 

) 6.9 

 

×

 

 10

 

17

 

 and (

 

1

 

, 

 

2

 

) 

 

10.1 

 

×

 

10

 

17

 

 cm

 

–3
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lower than that of Czochralski Si. Thus, oxygen precip-
itation, accompanied by the removal of oxygen atoms
from interstitial positions, must reduce the strength of sil-
icon single crystals. Moreover, oxygen precipitation is
accompanied by generation of self-interstitials [14], which
would be expected to assist in suppressing the above-men-
tioned transformation of 

 

Ç

 

-defects during heating and,
accordingly, to reduce the microhardness.

Thus, two competing processes influence the varia-
tion in the microhardness of oxygen-containing Si dur-
ing heat treatment: oxygen precipitation, which reduces
the microhardness of the material, and the transforma-
tion of 

 

Ç-defects, accompanied by the formation of
interstitial-type defects, which raises the microhardness
of silicon. Our experimental data indicate that the latter
process prevails.

Gold diffusion produces marked changes in the
mechanical properties of single-crystal silicon. There
are several reasons for this. In n-type silicon, compen-
sating gold acceptor centers have the form of negatively
charged atoms on lattice sites, Aus [9]. Gold atoms dif-
fuse into silicon through interstices and occupy electro-
active, substitutional positions by kicking out Si atoms
into interstices [15]:

Aui  Aus + Sii.

As pointed out above, the Sii self-interstitials created by
substitutional gold atoms must raise the strength of sil-
icon. However, at high supersaturations with self-inter-
stitials, as is the case with gold diffusion, B-defects cap-
ture Sii and grow to small interstitial-type dislocation
loops, referred to as A-defects [10, 16]. A-defects are
effective traps for interstitial atoms. They eliminate
supersaturation with Sii and cause interstitial point
defects to decompose, thereby reducing the strength of
Si single crystals.

Moreover, substitutional Au atoms, whose radius
(1.44 Å [12]) considerably exceeds that of Si atoms
(1.17 Å [12]), expand the silicon lattice, increasing the
bond length and, accordingly, reducing the microhard-
ness of the crystal. A similar strength loss under the
effect of compressive strain was reported earlier for a
number of electroinactive impurities in silicon: germa-
nium [8], tin [17], and rare-earth elements [18].

Aui atoms diffusing in Czochralski silicon effec-
tively interact with oxygen [9, 19, 20] and become cap-
tured by precipitates growing during heat treatment,
without occupying electroactive, substitutional posi-
tions. In particular, in this study most of the gold atoms
(>90%) in silicon with NO = 10.1 × 1017 cm–3 were elec-
troinactive and, hence, did not reside in substitutional
sites. During gold diffusion in silicon with a high inter-
stitial oxygen concentration, this should prevent
strength degradation.

 

CONCLUSIONS

Diffusion doping with gold was shown to reduce the
microhardness of silicon single crystals. Oxygen pre-
cipitation suppresses this process because diffusing
gold atoms, Au

 

i

 

, interact with oxygen and become cap-
tured by growing precipitates.
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