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A Short Synthesis of Preussin: Use of Allyldimethylsilyl as Masked Hydroxyl1
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Abstract: A short and efficient synthesis of Preussin utilizing al-
lyldimethylsilyl group as hydroxyl equivalent via an interesting
(3+2) annulation reaction involving non-classical pentavalent sili-
con cation transition state, has been described.
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Isolated originally from Preussia sp. and Aspergillus
ochraceus2a and having strong inhibitory activity as
broad-spectrum antibiotics against filamentous fungi,2b

the pyrrolidine alkaloid Preussin has been the target of
many synthetic endeavors due to its tri-cis-pyrrolidine
structure.3 Recent observations of the role of Preussin in
inhibition of the fission yeast ts mutants defective on
cdc2-regulatory genes,4 apoptosis-induction, inhibition of
cyclin-E kinase,5 and inhibition of programmed-1 riboso-
mal frameshifting,6 have rekindled interest in synthesis of
Preussin and its analogs. Suitably substituted silyl group
can be treated as synthetically equivalent to hydroxyl
function7 and a synthetic approach using dimethylphenyl-
silyl group in place of ring hydroxy function has been re-
ported.8 The possibility that silyl group can be treated as
masked hydroxyl, prompted us to undertake and to report
herein a short and efficient route to Preussin via 2-phenyl-
methyl-3-hydroxy-pyrrolidine-5-carboxaldehyde.

Scheme 1

While investigating the Sakurai–Hosomi reaction of allyl-
trimethylsilane with carbonyl compounds in presence of
Lewis acid, Kiyooka et al. have observed an interesting
(3+2) annulation reaction involving non-classical pen-
tavalent silicon cation transition state where cis-2-substi-
tuted 3-hydroxy-5-trimethylsilylmethyl-pyrrolidines
were obtained.9

We envisaged using allyldimethylphenylsilane in place of
allyltrimethylsilane in order to obtain, in a similar reac-
tion, corresponding 5-dimethylphenylsilanylmethylpyr-

rolidine, which might be converted to (2S,3S,5S)-2-
benzyl-1-benzyloxycarbonyl-3-hydroxy-5-hydroxymeth-
yl-pyrrolidine as an en route to Preussin (Scheme 1).

The reaction of allyl trimethylsilane with Cbz-Phe-al gave
as reported, the cis-pyrrolidine 2a in 55% yield along with
open chain syn-alcohol 4 as minor product (<5%).10 How-
ever, using allyldimethylphenylsilane under similar con-
dition, no trace of cyclic product 2b was seen and the
allylic alcohol 4 was isolated as the only product. Failure
to obtain cyclic product in this case can be rationalized to
be due to the bulkiness of phenyl substitution in the
crowded transition state involving pentavalent silicon
(Scheme 2).

Scheme 2

Magar et al has shown that allyldimethyl silyl group can
also be used as a hydroxy equivalent.11 Thus using di-
allyldimethylsilane in place of trimethylsilane in the
above reaction gave the cyclic product 2c in good yield.12

2c was converted to its acetate 2d using Ac2O and Et3N.13

Treatment of the acetate 2d first with bromine in CH2Cl2

followed by HF–pyridine as fluoride source13 gave the
corresponding fluorosilane, which was not characterized
and was directly reacted with H2O2–K2CO3 to provide
(2S,3S,5S)-3-acetyl-2-benzyl-benzyloxycarbonyl-5-hy-
droxymethyl-pyrrolidine 5a in good yield.14 During the
oxidative reaction under basic conditions, hydrolysis of
the acetate group also occurred and dihydroxy compound
5b was obtained in small amount. The formation of 5b
could be minimized using preformed H2O2–Na2CO3.
Compound 5a on Swern oxidation gave pyrrolidine alde-
hyde 6 in 60% yield (Scheme 3).15 As a similarly protect-
ed aldehyde has already been converted to Preussin16 in a
few simple steps, this constitutes a formal synthesis of
Preussin.

Thus, we have accomplished a short and efficient synthe-
sis of the advanced aldehyde intermediate 6 having func-
tionalities of requisite stereochemistry. We feel that this
strategy is general in nature and can serve to give a range
of novel Preussin analogs.
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MHz, CDCl3): d = 155.1, 139.3, 136.6, 134.6, 129.8, 129.5, 
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(M + 1), 383, 292.
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mL), taken in a separating funnel and washed s uccessively 
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85%); [a]D = –38.21(c 0.28, MeOH). IR (neat): 3020, 1737, 
1690, 1413, 1219 cm–1. 1H NMR (200 MHz, CDCl3): d = 7.2 
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37.3, 37.1, 24.5, 23.9, 21.1, –2.4, –2.8. FABMS: m/z = 466 
(M + 1), 424.

(14) Synthesis of Compound 5a: To a solution of 2d (500 mg, 
1.07 mmol) in CH2Cl2 (30 mL) at 0 °C were added 
successively bromine (0.275 mL, 5.3 mmol) and HF–
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pyridine (1.4 mL). The reaction mixture was stirred at r.t. for 
3 h at the end of which excess of HF was destroyed by 
pouring the mixture over basic alumina. The resulting slurry 
was diluted with CH2Cl2 and filtered. The filtrate was dried 
over anhyd Na2SO4 and concentrated in vacuum. The 
material thus obtained was dissolved in a mixture of anhyd 
THF–MeOH (15 mL each) and KHCO3 (215 mg, 2.15 
mmol), KF (124 mg, 2.15 mmol), 30% H2O2 (2.68 mL, 21.5 
mmol) were added successively to the soln under stirring. 
The resulting mixture was stirred at r.t. for 10 h, sodium 
thiosulphate solution (30%, 25 mL) was added to it and the 
quenched mixture was extracted with EtOAc (50 mL × 3). 
Combined organic layer was washed with brine (30 mL), 
dried over anhyd Na2SO4, concentrated in vacuo and flash 
chromatographed over silica-gel using 30% EtOAc–hexane 
as eluent. Data of 5a: Colorless oil (286 mg, 70%); [a]D =
–40.54 (c 0.259, MeOH). IR(neat): 3350, 3017, 2935, 1679, 
1414 cm–1. 1H NMR (200 MHz, CDCl3): d = 7.2 (m, 10 H), 
5.1 (d, J = 12.5 Hz, 2 H), 4.4 (m, 1 H), 4.0 (m, 1 H), 3.6 (m, 
3 H), 2.8 (d, J = 6 Hz, 2 H), 2.3 (m, 1 H), 1.9 (s, 3 H), 1.7 (m, 
1 H). 13C NMR (200 MHz, CDCl3): d = 170.4, 156.1, 138.4, 
136.2, 129.7, 128.9, 128.6, 126.7, 72.0, 68.1, 67.2, 60.7, 
58.9, 36.7, 31.7,21.0. FABMS: m/z = 384 (M + 1), 340, 248. 
Data of 5b: Colorless oil (54.7 mg, 15%); [a]D = –65.71 (c 
0.035, MeOH). IR(neat): 3366, 2929, 1686, 1413 cm–1. 1H 
NMR (200 MHz, CDCl3): d = 7.2 (m, 10 H), 5.0 (d, J = 12.2 
Hz, 2 H), 4.1 (M, 1 H), 4.0 (m, 2 H), 3.9 (dd, J = 11.2 and 3.7 
Hz, 1 H), 3.6 (dd, J = 11.2 and 3.7 Hz, 1 H), 3.0 (dd, J = 12.6 
and 9.8 Hz, 2 H), 2.2 (m, 1 H), 1.8 (d, J = 13.7 Hz, 1 H), 1.7 

(bs, 2 H). 13C NMR (200 MHz, CDCl3): d = 157.3, 139.6, 
136.5, 129.9, 128.9, 128.7, 128.6, 126.5, 70.7, 67.8, 65.5, 
60.2, 58.9, 36.4, 35.0; FABMS: m/z 342 (M + 1), 298.

(15) Synthesis of Compound 6: To a stirred solution of 
oxalylchloride (0.06 mL, 0.83 mmol) in CH2Cl2 (10 mL) at 
–78 °C under N2 atmosphere was added DMSO (0.1 mL, 
1.14 mmol) using a micro syringe. After stirring the mixture 
for 30 min, a solution of 5a (200 mg, 0.52 mmol) in CH2Cl2 
(2 mL) was added slowly over a period of 10 min. The 
reaction mixture was stirred for 30 min at –78 °C and 
diisopropylethyl amine (0.455 mL, 2.6 mmol) was added to 
it slowly in 10 min. The cooling was discontinued and the 
reaction was allowed to warm to r.t., diluted with CH2Cl2 (20 
mL), washed with 5% HCl (20 mL), brine and water. The 
organic layer was dried over anhyd Na2SO4, concd under 
reduced pressure, and flash chromatographed over silica gel 
using 25% EtOAc–hexane as eluent to give 6 as viscous oil. 
Data of 6: Colourless oil (119 mg, 60%); [a]D = –69.23 (c 
0.156, MeOH). IR(neat): 2932, 1740, 1712, 1589, 1224 
cm–1. 1H NMR (200 MHz, CDCl3): d = 9.5 (br s, 1 H) 7.2 (m, 
10 H), 5.0 (d, J = 12 Hz, 2 H), 4.3 (m, 3 H), 2.7 (dd, J = 13.6 
and 9.5 Hz, 2 H), 2.1 (m, 2 H), 1.9 (s, 3 H). 13C NMR (200 
MHz, CDCl3): d = 200.5, 169.9, 158, 138, 136.2, 129.6, 129, 
128.8, 126.9, 72.7, 68.1, 64.4, 55.8, 33.0, 23.2, 21.1. 
FABMS: m/z = 382 (M + 1), 352, 248.
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