

Synthesis and Structural Characterization of Neutral Hexacoordinate Silicon(IV) Complexes with SiO₂N₄ Skeletons

Stefan Metz, Christian Burschka, and Reinhold Tacke^{*[a]}

Abstract: A series of novel neutral hexacoordinate silicon(IV) complexes with SiO_2N_4 skeletons (compounds **4-8**) was synthesized and structurally characterized by single-crystal X-ray diffraction and solid-state NMR spectroscopy (¹³C, ¹⁵N, ²⁹Si). The silicon(IV) complexes each contain two bidentate monoanionic O,N Schiff base ligands and two cyanato-*N* or thiocyanato-*N* ligands. Compounds **4-8** were prepared from Si(NCO)₄ or Si(NCS)₄, whereby the complex formation involved some unexpected chemical transformations of the ligands.

Keywords: coordination chemistry • hexacoordination • N,O ligands • silicon • X-ray diffraction

Introduction

In a series of recent publications, we have reported on the synthesis and structural characterization of the first pentacoordinate silicon(IV) complexes with Si-S bonds.^[1] Quite recently, we have also demonstrated that hexacoordinate silicon(IV) complexes with Si-S bonds, such as compounds 1-3, can be synthesized.^[2] The neutral silicon(IV) complex 1 (SiS₂O₂N₂ skeleton), with its two tridentate dianionic S,N,O ligands, was obtained by treatment of tetra(cyanato-N)silane with two molar equivalents of 1-(2-methyl-2,3-dihydrobenzothiazol-2-yl)propan-2-one and four molar equivalents of triethylamine. The derivatives 2 and 3 were obtained analogously. To our great surprise, totally different products were obtained when these syntheses were performed in the absence of triethylamine. Herein, we report on the synthesis and structural characterization of the neutral hexacoordinate silicon(IV) complexes 4-8. The studies reported in this paper were performed in context with our systematic investigations on higher-coordinate silicon compounds (for recent publications, see reference [3]; in this context, see also references [4] and [5]). Preliminary results of the studies reported here have already been presented elsewhere.^[6]

 [a] Dr. S. Metz, Dr. C. Burschka, Prof. Dr. R. Tacke Institut für Anorganische Chemie Universität Würzburg
 Am Hubland, 97074 Würzburg (Germany)
 Fax: (+49)931-888-4609
 E-mail: r.tacke@mail.uni-wuerzburg.de

Chem. Asian J. 2009, 4, 581-586

© 2009 Wiley-VCH Verlag GmbH & Co. KGaA, Weinheim

581

FULL PAPERS

Results and Discussion

Syntheses

Compounds **4-8** were synthesized according to Scheme 1, starting from tetra(cyanato-N)silane or tetra(thiocyanato-N)silane, and were isolated as crystalline solids (**7** was ob-

Scheme 1. Syntheses of compounds 4-8.

tained as the acetonitrile solvates 7·2CH₃CN^[7] (preparative scale) and 7·4CH₃CN (single crystals for X-ray diffraction studies) (yields: 4, 48%; 5, 39%; 6, 71%; 7·2CH₃CN, 32%; 8, 62%). In principle, all these yields could be improved by reducing the volume of solvent used in the synthesis; however, this was only possible at the expense of crystal quality owing to fast crystallization of the products. All attempts at recrystallization failed owing to their poor solubility in common organic solvents.

Treatment of 2-(2,3-dihydrobenzothiazol-2-yl)phenol with tetra(cyanato-*N*)silane or tetra(thiocyanato-*N*)silane, in the absence of triethylamine, did not result in the formation of **3** (SiS₂O₂N₂ skeleton) as expected; instead, the silicon(IV) complexes **4** and **5** (SiO₂N₄ skeletons) were isolated. From a formal point of view, the formation of **4** (**5**) involves the elimination of HNCO (HSCN) and hydrogen. As a result of

the (formal) hydrogen elimination, the bidentate monoanionic 2-(benzothiazol-2-yl)phenolato ligand is formed. The mechanism of this redox chemistry, which was not observed in the presence of triethylamine,^[2] is unclear.^[8]

Treatment of tetra(cyanato-N)silane with 2-(2-methyl-1,3thiazolidin-2-yl)phenol resulted in another surprise: Again, the expected product 2 ($SiS_2O_2N_2$ skeleton) could not be obtained. Instead, the silicon(IV) complex 6 (SiO_2N_4 skeleton) was isolated. However, in contrast to the treatment of tetra(cyanato-N)silane with 2-(2,3-dihydrobenzothiazol-2-yl)phenol (\rightarrow 4), the analogous treatment with 2-(2-methyl-1,3thiazolidin-2-yl)phenol ($\rightarrow 6$) did not involve hydrogen elimination. Rather we observed the formation of a thiocarbamate group as part of the ligand system. This result might be explained by the coordination of the ring-opened isomer of 2-(2-methyl-1,3-thiazolidin-2-yl)phenol (in this context, see reference [2]) as a bidentate monoanionic O.N ligand and addition of the resulting HNCO to the free SH group. Treatment of tetra(cyanato-N)silane with 2-(2-methyl-2,3-dihydrobenzothiazol-2-yl)phenol resulted in an analogous reaction (formation of 7). However, when using tetra(thiocyanato-N)silane instead of tetra(cyanato-N)silane, compound 8 (with an SH group as part of the ligand system) was formed. Obviously, the resulting HSCN does not react with the ligand system, contrary to what is observed in the case of HNCO.

The unexpected formation of compounds 6 and 7 suggested this chemistry could be useful as a method for the synthesis of thiocarbamates. To test this approach, 6 was treated with ethanol to generate the free ligand of 6, compound 9 (64% yield, Scheme 2). Demonstrating that the reaction se-

Scheme 2. Synthesis of compound 9.

quence Si(NCO)₄ \rightarrow **6** \rightarrow **9** is a synthetic method for the synthesis of the thiocarbamate **9**, starting from 2-(2-methyl-1,3-thiazolidin-2-yl)phenol, future studies would be necessary to evaluate the scope and applicability of this method.

Compounds 4–6, 7·2 CH₃CN, and 8 were characterized by elemental analyses (C, H, N, S), solid-state VACP/MAS NMR experiments (¹³C, ¹⁵N, ²⁹Si), and single-crystal X-ray diffraction studies (7 was structurally characterized as the solvate 7·4 CH₃CN). Compound 9 was characterized by elemental analysis (C, H, N, S) and solution NMR spectroscopy (¹H, ¹³C; solvent: [D₆]DMSO).

Crystal Structure Analyses

The crystal data and the experimental parameters for the crystal structure analyses of **4–6**, **7**•4 CH₃CN, and **8** are given in Table 1. The molecular structures in the crystal are shown in Figures 1–5; selected bond lengths and angles are given in the respective figure legends.

The Si-coordination polyhedra of **4–6**, **7**•4 CH₃CN, and **8** are slightly distorted octahedra, with the two NCX (X = O, S) ligands in *trans* positions. The two nitrogen atoms and the two oxygen atoms of the two bidentate O,N ligands each also occupy *trans* positions. The same stereochemistry has also been observed experimentally for the related compounds **10** and **11**, and the five possible stereoisomers of the

Figure 1. Molecular structure of **4** in the crystal (probability level of displacement ellipsoids 50%). Selected bond lengths [Å] and angles [°]: Si-O2 1.7324(12), Si-N1 1.8262(13), Si-N2 1.9668(14), N1-C1 1.1654(19), C1-O1 1.1898(19); O2-Si-O2A 179.999(1), O2-Si-N1 88.51(6), O2-Si-N1A 91.49(6), O2-Si-N2 89.31(6), O2-Si-N2A 90.69(6), N1-Si-N1A 180.00(9), N1-Si-N2 90.37(6), N1-Si-N2A 89.63(6), N2-Si-N2A 180.0, Si-N1-C1 158.77(13), N1-C1-O1 177.44(17).

model system **12** have been studied computationally.^[3a] Except for in the case of **5**, the asymmetric units contain half a molecule. The Si–O distances of the compounds stud-

Table 1. Crystallographic data for compounds 4-6, 7-4CH₃CN, and 8.

ied are in the range 1.7046(10)-1.7324(12) Å, and the Si–N (Si–NCX; X = O, S) distances range from 1.950(2) Å (1.8262(13) Å) to 1.9680(12) Å (1.8577(18) Å). All these

	4	5	6	7·4 CH ₃ CN	8
Empirical formula	$C_{28}H_{16}N_4O_4S_2Si$	$C_{28}H_{16}N_4O_2S_4Si$	C24H26N6O6S2Si	$C_{40}H_{38}N_{10}O_6S_2Si$	C30H24N4O2S4Si
Formula mass [g mol ⁻¹]	564.66	596.78	586.72	847.01	628.86
<i>T</i> [K]	193(2)	173(2)	173(2)	173(2)	173(2)
$\lambda(Mo_{Kq})$ [Å]	0.71073	0.71073	0.71073	0.71073	0.71073
Crystal system	triclinic	monoclinic	monoclinic	triclinic	triclinic
Space group (no.)	P1 (2)	C2/c (15)	C2/c (15)	P1 (2)	P1 (2)
a [Å]	7.1874(14)	15.2726(15)	14.529(3)	7.3210(15)	7.4107(11)
b [Å]	9.2835(19)	12.9228(11)	8.5317(17)	10.779(2)	9.6940(14)
c [Å]	9.983(2)	13.8134(13)	21.745(4)	14.706(3)	11.4629(17)
	74.20(3)	90	90	73.05(3)	66.980(16)
β[°]	70.09(3)	104.745(11)	101.58(3)	81.37(3)	74.052(17)
γ [°]	75.58(3)	90	90	72.82(3)	79.065(18)
$V[Å^3]$	593.6(2)	2636.5(4)	2640.5(9)	1058.0(4)	725.59(18)
Z	1	4	4	1	1
$\rho_{\rm calcd} [\rm g cm^{-3}]$	1.580	1.503	1.476	1.329	1.439
$\mu [\mathrm{mm}^{-1}]$	0.323	0.442	0.300	0.213	0.405
F ₀₀₀	290	1224	1224	442	326
Crystal dimensions [mm]	$0.5 \times 0.3 \times 0.2$	$0.5 \times 0.5 \times 0.4$	$0.5 \times 0.3 \times 0.1$	$0.5 \times 0.5 \times 0.4$	$0.4 \times 0.4 \times 0.3$
2θ range [°]	4.62-54.58	5.52-56.08	5.56-56.00	5.60-56.06	4.58-56.16
Index ranges	$-9 \leq h \leq 9$	$-20 \le h \le 20$	$-19 \le h \le 19$	$-9 \le h \le 9$	$-9 \leq h \leq 9$
	$-11 \le k \le 11$	$-17 \le k \le 16$	$-11 \le k \le 11$	$-14 \leq k \leq 14$	$-12 \leq k \leq 12$
	$-12 \le l \le 12$	$-18 \le l \le 18$	$-28 \le l \le 28$	$-19 \le l \le 19$	$-15 \le l \le 15$
No. of collected reflections	5406	13734	19646	12766	8461
No. of independent reflections	2424	3147	3158	4715	3237
R _{int}	0.0411	0.0325	0.0546	0.0433	0.0467
No. of reflections used	2424	3147	3158	4715	3237
No. of parameters	178	180	179	277	191
$S^{[a]}$	1.053	1.055	1.097	1.063	1.038
Weight parameters $a/b^{[b]}$	0.0502/0.1661	0.0418/3.2876	0.0887/4.7061	0.0659/0.3049	0.0447/0.4871
$R1^{[c]}[I > 2\sigma(I)]$	0.0340	0.0328	0.0585	0.0442	0.0405
$wR2^{[d]}$ (all data)	0.0909	0.0885	0.1747	0.1231	0.1056
Max./min. residual electron density $[e Å^{-3}]$	+0.276/-0.333	+0.509/-0.540	+1.355/-0.538	+0.341/-0.348	+0.292/-0.449

[a] $S = \{\Sigma[w(F_o^2 - F_c^2)^2]/(n-p)\}^{0.5}$; n = no. of reflections; p = no. of parameters. [b] $w^{-1} = \sigma^2(F_o^2) + (aP)^2 + bP$, with $P = [\max(F_o^2, 0) + 2F_c^2]/3$. [c] $R1 = \Sigma ||F_o| - |F_c||/\Sigma |F_o|$. [d] $wR2 = \{\Sigma[w(F_o^2 - F_c^2)^2]/\Sigma[w(F_o^2)^2]\}^{0.5}$.

Chem. Asian J. 2009, 4, 581-586

© 2009 Wiley-VCH Verlag GmbH & Co. KGaA, Weinheim

FULL PAPERS

Figure 2. Molecular structure of **5** in the crystal (probability level of displacement ellipsoids 50%). Selected bond lengths [Å] and angles [°]: Si-O 1.7046(10), Si-N1 1.8577(18), Si-N2 1.8287(19), Si-N3 1.9680(12), N1-C1 1.162(3), N2-C2 1.170(3), C1-S1 1.607(2), C2-S2 1.605(2); O-Si-OA 179.87(8), O-Si-N1 90.07(4), O-Si-N2 89.93(4), O-Si-N3 90.07(5), O-Si-N3A 89.93(5), N1-Si-N2 180.0, N1-Si-N3 91.33(4), N1-Si-N3A 91.33(4), N2-Si-N3 88.67(4), N2-Si-N3A 88.67(4), N3-Si-N3A 177.34(7), Si-N1-C1 180.0, Si-N2-C2 180.0, N1-C1-S1 180.0, N2-C2-S2 180.0.

Figure 4. Molecular structure of **7** in the crystal of **7**·4CH₃CN (probability level of displacement ellipsoids 50%). Selected bond lengths [Å] and angles [°]: Si-O2 1.7220(12), Si-N1 1.8269(16), Si-N2 1.9606(14), N1-C1 1.172(2), C1-O1 1.191(2); O2-Si-O2A 180.0, O2-Si-N1 88.41(6), O2-Si-N1A 91.59(6), O2-Si-N2 90.36(6), O2-Si-N2A 89.64(6), N1-Si-N1A 180.00(7), N1-Si-N2 88.93(6), N1-Si-N2A 91.07(6), N2-Si-N2A 180.00(5), Si-N1-C1 159.33(13), N1-C1-O1 177.84(18).

Figure 3. Molecular structure of **6** in the crystal (probability level of displacement ellipsoids 50%). Selected bond lengths [Å] and angles [°]: Si-O2 1.718(2), Si-N1 1.850(2), Si-N2 1.950(2), N1-C1 1.158(4), C1-O1 1.202(4); O2-Si-O2A 180.0, O2-Si-N1 88.74(10), O2-Si-N1A 91.26(10), O2-Si-N2 90.83(10), O2-Si-N2A 89.17(9), N1-Si-N1A 180.00(15), N1-Si-N2 89.63(10), N1-Si-N2A 90.36(10), N2-Si-N2A 179.999(1), Si-N1-C1 162.1(2), N1-C1-O1 178.1(3).

bond lengths are very similar to those found for structurally related hexacoordinate silicon(IV) complexes with SiO_2N_4 skeletons.^[3a] The *trans*-X-Si-X (X = O, S) angles fit almost perfectly with the ideal 180° angle (maximum deviation, 2.66(7)°), and the *cis*-X-Si-X (X = O, S) angles show a maximum deviation of 1.87(8)° from the ideal 90° angle. The Si-N-C(X) (X = O, N) angles range from 158.77(13)° to 180.0°, and the N-C-X (X = O, N) angles range from 177.44(17)° to 180.0°.

Figure 5. Molecular structure of **8** in the crystal (probability level of displacement ellipsoids 50%). Selected bond lengths [Å] and angles [°]: Si-O 1.7096(15), Si-N1 1.8465(17), Si-N2 1.9519(16), N1-C1 1.174(3), C1-S1 1.606(2); O-Si-OA 180.0, O-Si-N1 88.13(8), O-Si-N1A 91.87(8), O-Si-N2 90.27(7), O-Si-N2A 89.73(7), N1-Si-N1A 180.0, N1-Si-N2 89.68(7), N1-Si-N2A 90.32(7), N2-Si-N2A 179.999(1), Si-N1-C1 165.90(16), N1-C1-S1 178.8(2).

Some structural features of compound **5** differ from those observed for **4**, **6**, **7**-4 CH₃CN, and **8**. Noteworthy are the two different Si–N(CS) bond lengths (1.8287(19) and 1.8577(18) Å) and the linear S-C-N-Si-N-C-S moiety of **5**,^[9] as the Si-N-C(X) and N-C-X (X = O, S) angles of all the

other compounds studied differ from the 180° angle (Si-N-C(X), 158.77(13)-165.90(10)°; N-C-X, 177.44(17)-178.8(2)°).

NMR Studies

Compounds 4-6, 7·2 CH₃CN, and 8 were studied by solidstate VACP/MAS NMR spectroscopy (¹³C, ¹⁵N, ²⁹Si). The isotropic ²⁹Si chemical shifts obtained in these studies (4, $\delta =$ -201.9 ppm; 5, $\delta =$ -204.0 ppm; 6, $\delta =$ -206.1 ppm; 7·2CH₃CN, $\delta =$ -205.7 ppm; 8, $\delta =$ -207.1 ppm)^[10] are very similar and are in the same range as those found for structurally related silicon(IV) complexes with SiO₂N₄ skeletons that also contain two bidentate O,N Schiff base ligands and two cyanato-*N* or thiocyanato-*N* ligands.^[3a] Thus, the ²⁹Si NMR data obtained confirms the identities of 4–8. The solid-state ¹³C and ¹⁵N NMR data are also compatible with the structures determined by single-crystal X-ray diffraction. Owing to the poor solubility of 4–6, 7·2 CH₃CN, and 8 in common organic solvents, no solution-state NMR experiments could be performed.

Conclusions

With the synthesis of compounds 4-6, 7.2 CH₃CN, and 8, a series of novel neutral hexacoordinate silicon(IV) complexes with SiO₂N₄ skeletons has been made accessible. All compounds contain two bidentate monoanionic O,N Schiff base ligands and two monodentate monoanionic cyanato-N or thiocyanato-N ligands. The formation of 4-8 was totally unexpected and is still not fully understood: When performing the syntheses in the presence of triethylamine, the expected neutral hexacoordinate silicon(IV) complexes with SiS₂O₂N₂ skeletons are formed (compounds 1-3),^[2] whereas in the absence of triethylamine, the sulfur atoms do not act as ligand atoms, that is, the ligands used for the syntheses do not behave as tridentate dianionic S,N,O ligands.^[11] Instead, in the course of the formation of 4-7, the ligands undergo further reactions (4 and 5, formal hydrogen elimination; 6 and 7, formal addition of HNCO) and behave as bidentate monoanionic O,N ligands. In the case of 8, the ligand undergoes no additional transformations and behaves as a bidentate monoanionic O,N ligand as well. Future studies to analyze the course of the reactions that lead to the formation of 4-8 in more detail are necessary. Furthermore, the synthetic potential of the ligand transformations (which has been demonstrated exemplarily by the synthesis of 9) has to be evaluated.

Experimental Section

General procedures: All syntheses were carried out under dry nitrogen. The organic solvents used were dried and purified according to standard procedures and stored under nitrogen. Melting points were determined with a Büchi Melting Point B-540 apparatus using samples in sealed capillaries. The ¹H and ¹³C solution NMR spectra were recorded at 23 °C on a Bruker Avance 500 NMR spectrometer (¹H, 500.1 MHz; ¹³C,

125.8 MHz) using [D₆]DMSO as the solvent. Chemical shifts (ppm) were determined relative to internal [D₅]DMSO (¹H, δ =2.49 ppm) or [D₆]DMSO (¹³C, δ =39.5 ppm). Assignment of the ¹³C NMR data was supported by DEPT 135 and ¹³C,¹H correlation experiments. Solid-state ¹³C, ¹⁵N, and ²⁹Si VACP/MAS NMR spectra were recorded at 22 °C on a Bruker DSX-400 NMR spectrometer with bottom-layer rotors of ZrO₂ (diameter 7 mm) containing ca. 200–300 mg of sample (¹³C, ¹⁰O.6 MHz; ¹⁵N, 40.6 MHz; ²⁹Si, 79.5 MHz; external standard, TMS (¹³C, ²⁹Si; δ = 0 ppm) or glycine (¹⁵N, δ =-342.0 ppm); spinning rate, 5–6 kHz; contact time, 2 ms (¹³C), 3–5 ms (¹⁵N), or 5 ms (²⁹Si); 90° ¹H transmitter pulse length, 3.6 µs; repetition time, 4 s). The precursors Si(NCO)₄ and Si(NCS)₄ were synthesized according to reference [13]; for analytical data, see reference [2].

Silicon(IV) complex 4: Tetra(cyanato-*N*)silane (171 mg, 872 µmol) was added in a single portion at 20 °C to a stirred solution of 2-(2,3-dihydrobenzothiazol-2-yl)phenol (400 mg, 1.74 mmol) in acetonitrile (25 mL), and the reaction mixture was then kept undisturbed at 20 °C for 2 days. The resulting solid was isolated by filtration, washed with diethyl ether (10 mL), and then dried in vacuo (0.01 mbar, 20 °C, 2 h) to give 4 in 48% yield (235 mg, 416 µmol) as a yellow crystalline product; m.p. 224–225 °C. ¹³C VACP/MAS NMR: δ =117–127 (br signal with intensity maxima at 118.9, 121.1, and 124.6), 129.1, 134.9, 147.0, and 156.8 (SC₆H₄N, OC₆H₄C), 172.6 ppm (C=N), NCO signal not detected; ¹⁵N VACP/MAS NMR: δ =-201.9 ppm; elemental analysis (%) calcd for C₂₈H₁₆N₄O₄S₂Si (564.68): C 59.56, H 2.86, N 9.92, S 11.36; found: C 59.6, H 3.1, N 10.1, S 11.4.

Silicon(IV) complex **5**: Tetra(thiocyanato-*N*)silane (350 mg, 1.34 mmol) was added in a single portion at 20 °C to a stirred solution of 2-(2,3-dihydrobenzothiazol-2-yl)phenol (616 mg, 2.69 mmol) in THF (60 mL), and the reaction mixture was then stirred at 20 °C for 5 min. The undissolved solid was filtered off and discarded, and the filtrate was kept undisturbed at 20 °C for 2 days. The resulting solid was isolated by filtration, washed with diethyl ether (10 mL), and then dried in vacuo (0.01 mbar, 20 °C, 2 h) to give **5** in 39% yield (315 mg, 528 µmol) as a yellow crystalline product; m.p. > 250 °C (decomp.). ¹³C VACP/MAS NMR: δ = 117.5, 120.3, 122.3 (2C), 124.1, 128.3 (3C), 132.3, 139.6, 146.9, and 155.2 (SC₆H₄N, OC₆H₄C), 173.5 ppm (C=N), NCS signal not detected; ¹⁵N VACP/MAS NMR: no signals detected; ²⁹Si VACP/MAS NMR: δ = -204.0 ppm; elemental analysis (%) calcd for C₂₈H₁₆N₄O₂S₄Si (596.81): C 56.35, H 2.70, N 9.39, S 21.49; found: C 56.4, H 2.9, N 9.3, S 21.4.

Silicon(IV) complex **6**: Tetra(cyanato-*N*)silane (202 mg, 1.03 mmol) was added in a single portion at 20 °C to a stirred solution of 2-(2-methyl-1,3-thiazolidin-2-yl)phenol (400 mg, 2.05 mmol) in a mixture of acetonitrile (20 mL) and THF (10 mL), and the reaction mixture was then kept undisturbed at 20 °C for 4 days. The resulting solid was isolated by filtration, washed with diethyl ether (10 mL), and then dried in vacuo (0.01 mbar, 20 °C, 2 h) to give **6** in 71 % yield (430 mg, 733 µmol) as a pale yellow crystalline product; m.p. > 175 °C (decomp.). ¹³C VACP/MAS NMR: δ = 19.7 (CH₃), 27.6 (NCH₂CH₂S), 53.1 (NCH₂CH₂S), 118.9, 120.5 (2C), 128.2, 136.7, and 158.9 (OC₆H₄C), 172.7 (C(O)NH₂ or C=N), 176.5 pm (C(O)NH₂ or C=N), NCO signal not detected; ¹⁵N VACP/MAS NMR: δ = -315.3 (NCO), -273.0 (C(O)NH₂), -141.6 ppm (C=N); ²⁹Si VACP/MAS NMR: δ = -206.1 ppm; elemental analysis (%) calcd for C₂₄H₂₆N₆O₆S₂Si (586.72): C 49.13, H 4.47, N 14.32, S 10.93; found: C 49.3, H 4.6, N 14.3, S 10.9.

Silicon(IV) complex **7**·2 CH₃CN: Tetra(cyanato-*N*)silane (202 mg, 1.03 mmol) was added in a single portion at 20 °C to a stirred solution of 2-(2-methyl-2,3-dihydrobenzothiazol-2-yl)phenol (501 mg, 2.06 mmol) in acetonitrile (12 mL), and the reaction mixture was then kept undisturbed at 20 °C for 4 days. The resulting solid was isolated by filtration, washed with diethyl ether (10 mL), and then dried in vacuo (0.01 mbar, 20 °C, 2 h) to give **7**·2CH₃CN in 32 % yield (255 mg, 333 µmol) as a colorless crystalline product; m.p. 152–153 °C. ¹³C VACP/MAS NMR: δ =2.7 (CH₃CN), 21.6 (CH₃), 119.4, 121.4 (2C), 128.6 (3C), 132.0 (2C), 137.1, 138.4, 150.2, and 160.2 (SC₆H₄N, OC₆H₄C), 166.9 (C(O)NH₂ or C=N), 181.1 ppm (C(O)NH₂ or C=N), CH₃CN and NCO signals not detected;

FULL PAPERS

¹⁵N VACP/MAS NMR: δ =-315.4 (NCO), -275 (br, C(O)NH₂), -132.0 ppm (C=N), CH₃CN signal not detected; ²⁹Si VACP/MAS NMR: δ =-205.7 ppm; elemental analysis (%) calcd for C₃₆H₃₂N₈O₆S₂Si (764.92): C 56.53, H 4.22, N 14.65, S 8.38; found: C 56.3, H 4.2, N 14.4, S 8.4.

Silicon(IV) complex 8: Tetra(thiocyanato-N)silane (300 mg, 1.15 mmol) was added in a single portion at 20 °C to a stirred solution of 2-(2methyl-2,3-dihydrobenzothiazol-2-yl)phenol (561 mg, 2.31 mmol) in acetonitrile (60 mL), and the reaction mixture was then stirred for 5 min. The undissolved solid was filtered off and discarded, and the filtrate was kept undisturbed at 20°C for 3 days. The resulting solid was isolated by filtration, washed with diethyl ether (10 mL), and then dried in vacuo (0.01 mbar, 20 °C, 2 h) to give 8 in 62% yield (450 mg, 716 µmol) as a ¹³C VACP/MAS yellow crystalline product; m.p. >140°C (decomp.). NMR: δ=21.4 (CH₃), 120.1 (2 C), 122.6, 126.3, 129.6 (2 C), 131.2 (3 C), 140.7, 145.0, and 159.4 (SC₆H₄N, OC₆H₄C), 180.6 ppm (C=N), NCS signal not detected; ¹⁵N VACP/MAS NMR: $\delta = -139.0$ ppm (C=N), NCS signal not detected; ²⁹Si VACP/MAS NMR: $\delta = -207.1$ ppm; elemental analysis (%) calcd for $C_{30}H_{24}N_4O_2S_4Si$ (628.90): C 57.30, H 3.85, N 8.91, S 20.40; found: C 57.4, H 3.9, N 8.8, S 20.2.

9: A suspension of 6 (400 mg, 682 µmol) in a mixture of THF (5 mL) and ethanol (5 mL) was stirred at 20 °C for 3 h. The solvent was removed under reduced pressure, and the remaining solid was dissolved in boiling ethanol (9 mL). The resulting hot mixture was filtered, and the filtrate was kept undisturbed at -20°C for 24 h. The resulting solid was isolated by filtration and dried in vacuo (0.01 mbar, 20 °C, 2 h) to give 10 in 64 % yield (209 mg, 877 µmol) as a yellow crystalline product; m.p. 143-145 °C. ¹H NMR ([D₆]DMSO): $\delta = 2.34$ (s, 3H, CH₃), 3.08 (t, ³J(H,H) = 6.6 Hz, 2H, SCH₂CH₂N), 3.71 (t, ${}^{3}J(H,H) = 6.6$ Hz, 2H, SCH₂CH₂N), 6.75–6.79 (m, 2H, H-4/H-6, OC_6H_4C), 7.24–7.29 (m, 1H, H-5, OC_6H_4C), 7.63–7.66 (m, 1H, H-3, OC₆H₄C), 7.4–7.8 (br m, 2H, NH₂), 15.91 ppm (s, 1H, OH); ¹³C NMR ([D₆]DMSO): $\delta = 14.7$ (CH₃), 29.7 (SCH₂CH₂N), 49.2 (SCH₂CH₂N), 117.0 and 117.8 (C-4/C-6, OC₆H₄C), 119.1 (C-2, OC₆H₄C), 128.8 (C-3, OC₆H₄C), 132.3 (C-5, OC₆H₄C), 162.9 (C-1, OC₆H₄C), 166.6 (C=N or C(O)NH₂), 172.9 ppm (C=N or C(O)NH₂); elemental analysis (%) calcd for C₁₁H₁₄N₂O₂S (238.31): C 55.44, H 5.92, N 11.76, S 13.46; found: C 54.7, H 5.9, N 11.8, S 13.4.

Crystal structure analyses: Suitable single crystals of **4–6**, **7**-4CH₃CN, and **8** were isolated directly from the respective reaction mixtures. The crystals were mounted in inert oil (perfluoropolyalkyl ether, ABCR) on a glass fiber and then transferred to the cold nitrogen gas stream of the diffractometer (Stoe IPDS; graphite-monochromated Mo_{Ka} radiation, $\lambda = 0.71073$ Å). All structures were solved by direct methods.^[14] The non-hydrogen atoms were refined anisotropically.^[15] A riding model was employed in the refinement of the CH hydrogen atoms. CCDC 713792 (**4**), 713793 (**5**), 713794 (**6**), 713795 (**7**-4 CH₃CN), and 713796 (**8**) contain the supplementary crystallographic data for this paper. These data can be obtained free of charge from The Cambridge Crystallographic Data Centre via www.ccdc.cam.ac.uk/data_request/cif.

- [1] D. Troegel, C. Burschka, S. Riedel, M. Kaupp, R. Tacke, Angew. Chem. 2007, 119, 7131-7135; Angew. Chem. Int. Ed. 2007, 46, 7001-7005, and references therein.
- [2] S. Metz, C. Burschka, R. Tacke, Eur. J. Inorg. Chem. 2008, 4433– 4439.
- [3] Recent publications dealing with higher-coordinate silicon compounds: a) O. Seiler, C. Burschka, M. Fischer, M. Penka, R. Tacke, *Inorg. Chem.* 2005, 44, 2337–2346; b) O. Seiler, C. Burschka, S. Metz, M. Penka, R. Tacke, *Chem. Eur. J.* 2005, 11, 7379–7386; c) R. Tacke, R. Bertermann, C. Burschka, S. Dragota, *Angew. Chem.* 2005, 117, 5426–5429; *Angew. Chem. Int. Ed.* 2005, 44, 5292–5295; d) X. Kästele, P. Klüfers, R. Tacke, *Angew. Chem.* 2006, 118, 3286–3288; *Angew. Chem. Int. Ed.* 2006, 45, 3212–3214; e) O. Seiler, C. Burschka, K. Götz, M. Kaupp, S. Metz, R. Tacke, *Z. Anorg. Allg. Chem.* 2007, 633, 2667–2670; f) O. Seiler, C. Burschka, T. Fenske, D. Troegel, R. Tacke, *Inorg. Chem.* 2007, 46, 5419–5424; g) S. Metz, C. Burschka, D. Platte, R. Tacke, *Angew. Chem.* 2007, 119, 7136–7139;

Angew. Chem. Int. Ed. 2007, 46, 7006–7009; h) G. González-García, J. A. Gutiérrez, S. Cota, S. Metz, R. Bertermann, C. Burschka, R. Tacke, Z. Anorg. Allg. Chem. 2008, 634, 1281–1286; i) B. Theis, C. Burschka, R. Tacke, Chem. Eur. J. 2008, 14, 4618–4630; j) R. Haga, C. Burschka, R. Tacke, Organometallics 2008, 27, 4395–4400; k) S. Metz, C. Burschka, R. Tacke, Organometallics 2008, 27, 6032–6034.

- [4] Selected reviews dealing with higher-coordinate silicon compounds:
 a) R. R. Holmes, Chem. Rev. 1996, 96, 927–950; b) V. Pestunovich,
 S. Kirpichenko, M. Voronkov in The Chemistry of Organic Silicon Compounds, Vol. 2, Part 2 (Eds.: Z. Rappoport, Y. Apeloig), Wiley,
 Chichester, 1998, pp. 1447–1537; c) C. Chuit, R. J. P. Corriu, C. Reye in Chemistry of Hypervalent Compounds (Ed.: K.-y. Akiba),
 Wiley-VCH, New York, 1999, pp. 81–146; d) R. Tacke, M. Pülm, B.
 Wagner, Adv. Organomet. Chem. 1999, 44, 221–273; e) M. A.
 Brook, Silicon in Organic, Organometallic, and Polymer Chemistry, Wiley, New York, 2000, pp. 97–114; f) R. Tacke, O. Seiler in Silicon Chemistry: From the Atom to Extended Systems (Eds.: P. Jutzi, U. Schubert), Wiley-VCH, Weinheim, Germany, 2003, pp. 324–337;
 g) D. Kost, I. Kalikhman, Adv. Organomet. Chem. 2004, 50, 1–106.
- [5] Selected recent publications dealing with higher-coordinate silicon compounds: a) D. Gerlach, E. Brendler, T. Heine, J. Wagler, Organometallics 2007, 26, 234–240; b) U. Böhme, B. Günther, Inorg. Chem. Commun. 2007, 10, 482–484; c) Y. Liu, S. A. Steiner III, C. W. Spahn, I. A. Guzei, I. S. Toulokhonova, R. West, Organometallics 2007, 26, 1306–1307; d) J. Wagler, Organometallics 2007, 26, 155–159; e) J. Wagler, D. Gerlach, G. Roewer, Inorg. Chim. Acta 2007, 360, 1935–1942; f) J. Wagler, A. F. Hill, Organometallics 2007, 26, 3630–3632; g) M. Spiniello, J. M. White, Organometallics 2008, 27, 994–999; h) V. V. Negrebetsky, P. G. Taylor, E. P. Kramarova, A. G. Shipov, S. A. Pogozhikh, Y. E. Ovchinnikov, A. A. Korlyukov, A. Bowden, A. R. Bassindale, Y. I. Kaukov, J. Organomet. Chem. 2008, 693, 1309–1320; i) E. Kertsnus-Banchik, I. Kalikhman, B. Gostevskii, Z. Deutsch, M. Botoshansky, D. Kost, Organometallics 2008, 27, 5285–5294.
- [6] S. Metz, C. Burschka, R. Tacke, *The 14th International Symposium on Organosilicon Chemistry/3rd European Organosilicon Days*, Würzburg, Germany, July 31–August 5, 2005, Book of Abstracts, Abstract P 159, p. 202.
- [7] The composition of this solvate is based on the elemental analysis.
- [8] The synthesis of 5 was also performed in dichloromethane leading to a similar yield and indicating that the formation of the oxidized product does not depend on the solvent.
- [9] Only in the case of 5, the S-C-N-Si-N-C-S moiety lies on a crystallographic twofold axis. As can be seen from the thermal parameters, the N1-C1-S1 moiety could be slightly disordered, which consequently would result in a deviation of the Si-N1-C1 angle from 180°.
- [10] Owing to ²⁹Si,¹⁴N coupling, the ²⁹Si VACP/MAS NMR spectra of 4-6, 7-2 CH₃CN, and 8 are characterized by broad and slightly structured signals.
- [11] One could speculate that the SH sulfur atom of the ring-opened form of the reagents can only coordinate to the silicon center in the presence of triethylamine; in the absence of the amine, the SH group may exist as it is or undergo further reactions. However, there is no experimental evidence for this assumption.
- [12] R. G. Neville, J. J. McGee in *Inorganic Syntheses, Vol. VIII* (Ed.: H. F. Holtzclaw, Jr.), McGraw-Hill, New York, **1966**, pp. 23–31.
- [13] a) R. V. Singh, J. P. Tandon, Synth. React. Inorg. Met.-Org. Chem. 1981, 11, 109–131; b) S. V. Singh, R. V. Singh, Synth. React. Inorg. Met.-Org. Chem. 1987, 17, 947–960.
- [14] a) G. M. Sheldrick, SHELXS-97, University of Göttingen, Göttingen (Germany), 1997; b) G. M. Sheldrick, Acta Crystallogr. Sect. A 1990, 46, 467–473.
- [15] G. M. Sheldrick, SHELXL-97, University of Göttingen, Göttingen (Germany), 1997.

Received: October 23, 2008 Revised: December 10, 2008 Published online: February 2, 2009

586