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Alexander S. Dudnik, Natalia Chernyak, Chunhui Huang, and Vladimir Gevorgyan*

Ambiphilic aromatic synthons—compounds possessing both
electrophilic and nucleophilic centers in the same molecule—
are important building blocks that are widely used for a
modular construction of complex molecules in organic syn-
thesis, medicinal chemistry, and materials science.[1] Tradi-
tionally, they are accessed through multistep syntheses. One
of the most efficient strategies toward 1,2-ambiphilic struc-
tures involves directed ortho-metalation (DOM) approach.[2]

Our research group has recently developed the palladium-
catalyzed directed ortho-acyloxylation of pyridyldiisopropyl-
silyl (PyDipSi) arenes B[3] [Eq. (1)] based on a C�H activation
process.[4] Most importantly, we have shown that the PyDipSi
directing group[5] could efficiently participate in a variety of
reactions as a nucleophilic entity. Because the acyloxy group
is known to serve as an electrophilic coupling partner,[6] the
o-acyloxylated PyDipSi-arenes can be formally considered as
1,2-ambiphiles. Taking into account the immense synthetic
potential of aryl halides as electrophilic reagents, we aimed at
the development of a general strategy for the synthesis of
ortho-halogenated aryl silanes C, which are much more
powerful 1,2-ambiphiles. Herein, we report the palladium-
catalyzed ortho-halogenation reaction of easily accessible
PyDipSi-arenes B into 1,2-ambiphiles C and their further
transformations to a variety of valuable building blocks.

First, we tested PyDipSi-arene 1a under a variety of
halogenation reaction conditions in the presence of 10 mol%
of Pd(OAc)2 (Table 1).[4a, 7] Initially, the palladium-catalyzed
bromination with 2 equivalents of NBS (N-bromosuccini-

mide) in PrCN at 80 8C afforded 50% of the desired product 2
(Table 1, entry 1; Hal = Br). Further increase of temperature
to 100 8C led to a slight improvement of the reaction outcome
(Table 1, entry 2). Addition of 50 equivalents of acetic
acid[7a,b] resulted in significant decrease of the reaction yield
(Table 1, entry 3). The employment of a stoichiometric
amount of Cu(OAc)2 additive gave only traces of brominated
product (Table 1, entry 4). Remarkably, addition of 1.5 equiv-
alents of PhI(OAc)2 dramatically improved the reaction, and
provided the bromination product in 80% yield (Table 1,
entry 5). Performing the reaction at the elevated temperature
(100 8C), however, gave a lower yield of 2 (Table 1, entry 6).
Gratifyingly, switching solvent to 1,2-dichloroethane allowed
for a better reaction yield (85 %) at lower temperature (60 8C;
Table 1, entry 7). Employment of NIS (N-iodosuccinimide) as
a halogen source under these reaction conditions produced
iodinated aryl silane 2 in 95 % yield (Table 1, entry 8;
Hal = I). On the other hand, employment of NCS
(N-chlorosuccinimide) gave the chlorinated product in a
moderate yield only (Table 1, entry 9; Hal = Cl).

Next, the generality of the palladium-catalyzed
ortho-halogenation of PyDipSi-arenes 1 was examined. The
iodination reaction with NIS in the presence of 1.5 equiv-
alents of PhI(OAc)2 was studied first. We found this trans-
formation to be efficient for a wide range of substrates, which
allowed for the synthesis of monoiodinated aryl silanes
2a–w in good to excellent yields (Scheme 1). It was found
that a variety of groups, including OMe (2b, 2 k), F (2d, 2n),
Cl (2e), Br (2 f, 2 l), ester (2g), and amide (2h) were perfectly
tolerated under the halogenation reaction conditions.
Iodination of para-substituted aryl silanes possessing both

Table 1: Optimization of ortho-halogenation reaction. X = halide.

Entry Additive (equiv) Hal Solvent T [8C] Yield [%][a]

1 none Br PrCN 80 50
2 none Br PrCN 100 65
3 AcOH (50) Br PrCN 80 15
4 Cu(OAc)2 (1) Br PrCN 100 trace
5 PhI(OAc)2 (1.5) Br PrCN 80 80
6 PhI(OAc)2 (1.5) Br PrCN 100 65
7 PhI(OAc)2 (1.5) Br C2H4Cl2 60 85
8 PhI(OAc)2 (1.5) I C2H4Cl2 65 95
9 PhI(OAc)2 (1.5) Cl C2H4Cl2 65 42

[a] Yield determined by NMR spectroscopy.
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electron-donating (2b) and electron-withdrawing (2d–h)
substituents proceeded with equal efficiency. meta-Substi-
tuted substrates displayed excellent site selectivity in the
iodination reaction, and provided monoiodinated compounds
as single regioisomers (2 i–l). In addition, ortho-iodination of
m-, p-disubstituted aryl silanes (2m,n), and 2-naphthyl
derivative (2o) occurred uneventfully and furnished the
desired products as sole regioisomers in high yields. Next,
the bromination reaction of 1 allowed for efficient synthesis of
o-bromo aryl silanes 2p–r. Notably, chlorination of electron-
rich aryl silane, possessing an OMe group para to the
functionalization site, was found to be more efficient than
that of electron-neutral 1 a (Table 1, entry 9), thus producing
chloro-derivative 2s in 69% yield. Finally, PyDipSi deriva-
tives of various heterocycles, such as benzofuran (2t),
carbazole (2u), indole (2v), and benzoxazole (2 w), were
monoiodinated in good yields. We find these results remark-
able, as 6-halo derivatives of most of these heterocycles are
not readily available and require multistep preparation. These
derivatives now can be accessed from the 5-haloprecursors of
the corresponding PyDipSi-heterocycles, which are either
commercially available or can be easily synthesized in one
step.

Naturally, after the development of efficient palladium-
catalyzed halogenation of aryl silanes, we investigated
possible transformations of the PyDipSi directing group
(Scheme 2).[8] First, the reaction of 2c with AgF/H2O (2:3)
in THF resulted in efficient removal of the directing group,
thus affording m-iodobiphenyl (6) in 97% yield.[9] Interest-

ingly, the overall three-step transformation of p-bromobi-
phenyl into m-iodobiphenyl constitutes an example of a
formal Finkelstein/“1,2-halogen dance” reaction. Next, the
iododesilylation reaction of chlorobromoaryl silane 2e with
NIS in the presence of AgF in THF allowed for efficient
preparation of 1-cloro-3-bromo-4-iodobenzene (3), which is a
synthetically useful and versatile building block for modular
functionalization of the benzene ring. Furthermore, iodoaryl
silane 2 i was efficiently converted into o-iodoaryl boronate
4,[10] which is another powerful 1,2-ambiphile, in 87 % yield by
a one-pot sequence involving borodesilylation with BCl3, and

Scheme 1. Palladium-catalyzed ortho-halogenation of aryl silanes. [a] Yield of isolated product. [b] See Supporting Information for experimental
details. [c] Reaction was performed in PrCN at 100 8C. [d] Reaction was performed without PhI(OAc)2 and with 1 equivalent of NIS. Boc= tert-
butoxycarbonyl.

Scheme 2. Transformations of the PyDipSi group in haloarene deriva-
tives. Reagents and conditions: a) AgF (4 equiv), H2O (6 equiv), THF,
RT, 12 h; b) AgF (4 equiv), NIS (4 equiv), THF, RT, 12 h; c) 1. BCl3
(4.4 equiv), DCM, 0 oC, RT, 6 h; 2. 30 wt% H2O2/3 wt % NaOH
(excess), H2O, RT, 12 h; d) 1. BCl3 (4.4 equiv), DCM, 0 oC, RT, 6 h;
2. pinacol (excess), Et3N/DCM (1:1), RT, 12 h. THF = tetrahydrofuran.
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subsequent protection with pinacol.[11,12] Furthermore, boro-
desilylation of 2 i and subsequent oxidation with H2O2/NaOH
afforded o-iodophenol 5 in 80 % yield.

Further utility of o-halogenated PyDipSi-arene deriva-
tives was demonstrated by a convergent synthesis of unsym-
metrically substituted benzo[b]silole 10 and dibenzosilole 15
(Scheme 3). First, treatment of 2 i with HF at room temper-
ature led to selective substitution of the pyridine group with
fluoride,[13] thus providing fluorosilane 7 in excellent yield.
Next, o-iodoaryl fluorosilane 7 was alkynylated with potas-
sium phenylethynyltrifluoroborate under Suzuki reaction
conditions[14] and produced 8 in 66 % yield. Alternatively,
alkynylated aryl silane 8 can be accessed from 2 i through a
sequence involving Sonogashira reaction[15] with phenylace-
tylene and subsequent substitution of the pyridine group with
fluoride. A subsequent reduction of silylfluoride 8 with
LiAlH4 furnished silylhydride 9. 5-Endo-dig cyclization of
the latter in the presence of KH in DME[16] provided 10 in
72% yield. En route to dibenzosilole derivative 15, o-iodoaryl

silane 2 i was subjected to Suzuki coupling[17] with 4-methox-
yphenylboronic acid and gave biphenylsilane 12 in 89 % yield.
Next, substitution of the pyridine group in 12 with fluoride
produced silylfluoride 13 quantitatively. Smooth reduction of
13 into hydride 14 and its subsequent electrophilic cyclization
reaction with trityl tetrakis(pentafluorophenyl)borate[18]

resulted in formation of dibenzosilole 15 in 71 % yield
(Scheme 3).

Definitely, o-benzyne is one of the most synthetically
attractive 1,2-ambiphiles.[19] Because o-silylphenyliodonium

triflates are known to efficiently generate benzynes in the
presence of TBAF,[20, 21] we decided to convert the iodide
functionality in PyDipSi-arenes 2 into a better leaving
iodonium group. Accordingly, substrate 2e, after exchange
of the pyridine group to fluoride, was smoothly converted into
the corresponding iodonium tetrafluoroborate 16
(Scheme 4).[22] Treatment of the latter with TBAF in CH2Cl2

allowed for the efficient generation of benzyne 17, trapping of
which with furan provided

1,4-epoxydihydronaphthalene 18 in 89% yield. To the
best of our knowledge, the above sequence, taken
together with the o-iodination of PyDipSi-arenes,
represents the first example of benzyne synthesis
featuring C�H activation strategy.

In conclusion, we have developed a general and
efficient strategy for the synthesis of 1,2-ambiphilic
aromatic and heteroannulated aromatic synthons.
This method features installation of the removable/
modifiable PyDipSi directing group on haloarenes
and subsequent palladium-catalyzed directed
ortho-halogenation reaction to give the o-halogenated
PyDipSi-arene derivatives. Synthetic usefulness of
these 1,2-ambiphilic building blocks was demon-
strated in a variety of transformations, involving
participation of both nucleophilic aryl silane and
electrophilic aryl iodide moieties. These transforma-
tions include protio-, halo-, borodesilylations, and
conversion of the PyDipSi group into the OH
functionality, as well as Suzuki and Sonogashira
cross-coupling reactions of the aryl iodide unit.
Finally, the unique reactivity of these 1,2-ambiphiles
was illustrated in convergent syntheses of benzannu-
lated silole derivatives, as well as in the efficient
generation of o-benzyne.
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