Bruce A. MacKay, Samuel A. Johnson, Brian O. Patrick, and Michael D. Fryzuk

Abstract: The reaction of the side-on, end-on ditantalum dinitrogen complex $([NPN]Ta)_2(\mu-\eta^1:\eta^2-N_2)(\mu-H)_2$ (where NPN = PhP(CH₂SiMe₂NPh)₂) with a variety of secondary and primary boranes is reported. With 9-BBN, hydroboration of the Ta₂N₂ unit occurs via B-H addition, which in turn triggers a cascade of reactions that result in N—N bond cleavage, ancillary ligand rearrangement involving silicon group migration, and finally elimination of benzene from the N-Ph group and a B-H moiety to generate the imide–nitride derivative. In the presence of excess 9-BBN, the Lewis acid – base adduct of the imide–nitride ($[NP\mu-N]Ta(=NBC_8H_{14})(\mu-NB(H)C_8H_{14})Ta[NPN]$) is formed. A similar set of reactions is observed for dicyclohexylborane (Cy₂BH), which hydroborates the dinitrogen complex to generate [NPN]Ta(H)(μ - $\eta^1:\eta^2$ -NNBCy₂)(μ -N)(Ta[NPN], followed by loss of H₂ and silicon group migration to yield the imide–nitride [NP μ -N]Ta(=NBCy₂)(μ -N)(Ta[NPN]. With thexyl borane (H₂BCMe₂CHMe₂), a similar sequence of reactions is suggested starting with hydroboration to generate [NPN]Ta(H)(μ - $\eta^1:\eta^2$ -NNB(H)C₆H₁₃)(μ -H)₂Ta[NPN], followed by loss of H₂ and ancillary ligand rearrangement. When bis(pentafluorophenyl)borane (HB(C₆F₅)₂) is used, no hydroboration of coordinated N₂ is observed, rather simple adduct formation to give ([NPN]Ta)₂(μ - $\eta^1:\eta^2$ -NN-B(H)(C₆F₅)₂)(μ -H)₂ occurs.

Key words: dinitrogen, tantalum, hydroboration, N-N bond cleavage.

Résumé : On rapporte les résultats de la réaction du complexe de diazote ditantale ([NPN]Ta)₂(μ -η¹:η²-N₂)(μ -H)₂ (dans lequel NPN = PhP(CH₂SiMe₂NPh)₂) avec une variété de boranes secondaires et primaires. Avec le 9-BBN, l'hydroboration de l'unité Ta₂N₂ se produit par une addition B-H, qui provoque à son tour une cascade de réactions conduisant à une rupture de la liaison N—N, un réarrangement du ligand impliquant une migration du groupe du silicium et finalement l'élimination du benzène du groupe N-Ph et une portion B-H pour générer la formation du dérivé imide–nitrure ([NPµ–N]Ta(=NBC₈H₁₄)(μ -NB(H)C₈H₁₄)Ta[NPN]). On observe un ensemble de réactions semblables avec le dicyclohexylborane (Cy₂BH) qui provoque une hydroboration du complexe de diazote pour générer le [NPN]Ta(H)(μ -η¹:η²-NNBCy₂)(μ -H)₂Ta[NPN], suivie d'une perte de H₂ et de la migration du groupe du silicium pour conduire à la formation de l'imide nitrure [NP μ -N]Ta(=NBCy₂)(μ -N)Ta[NPN]. Avec le thésylborane (H₂BCMe₂CHMe₂), la réaction suivrait un cours semblable qui débuterait avec une hydroboration pour générer le [NPN]Ta(H)(μ -η¹:η²-NNB(H)C₆H₁₃)-(μ -H)₂Ta[NPN], suivie d'une perte de H₂ et d'un réarrangement de ligand. Avec le bis(pentafluorophényl)borane (HB(C₆F₅)₂), on n'observe pas l'hydroboration du N₂ coordiné, uniquement la formation d'un adduit simple qui génère le ([NPN]Ta)₂(μ -η¹:η²-NN-B(H)(C₆F₅)₂)(μ -H)₂.

Mots clés : diazote, tantale, hydroboration, scission de la liaison N-N.

[Traduit par la Rédaction]

Introduction

The activation of small molecules by metal complexes is a mature area of inorganic chemistry. Nevertheless, molecular nitrogen, one of the most abundant small molecules in the biosphere, continues to frustrate inorganic chemists because of its intrinsic lack of reactivity (1–5). Under extreme conditions, N₂ will react with H₂ over an activated iron surface to generate ammonia; this energy-intensive catalytic transformation, known as the Haber–Bosch process, supplies the

global need for NH₃-derived fertilizers (6). While discovery of a homogeneous version of the Haber–Bosch process is the goal of a number of groups around the world (7, 8), another worthwhile goal is to develop a process that converts molecular nitrogen to high-value organonitrogen materials, such as amines, substituted hydrazines, and *N*-heterocycles (9–15).

A key challenge in devising any homogeneous catalytic cycle involving molecular nitrogen is coordination of N_2 to the metal centre. Because dinitrogen is intrinsically unreactive, formation of N_2 complexes is not straightforward.

Received 15 September 2004. Published on the NRC Research Press Web site at http://canjchem.nrc.ca on 16 March 2005.

B.A. MacKay, S.A. Johnson, B.O. Patrick, and M.D. Fryzuk.² Department of Chemistry, University of British Columbia, 2036 Main Mall, Vancouver, BC V6T 1Z1, Canada.

¹This article is part of a Special Issue dedicated to Dinitrogen Chemistry. ²Corresponding author (e-mail: fryzuk@chem.ubc.ca).

Scheme 1.

Since the first report of a dinitrogen complex in 1965 (16), many N₂ derivatives have been synthesized (17-20). The most common method of synthesis generally requires strongly reducing conditions, which unfortunately is incompatible with many functionalization protocols. Recently, we reported (21) a facile method for the formation of a ditantalum dinitrogen complex that involves reaction of N₂ with the ditantalum tetrahydride 1 (Scheme 1). This reaction proceeds smoothly to generate the side-on, end-on dinitrogen complex 2 without the necessity of added reducing agents. It occurred to us that multiple additions of some simple hydride reagent (E-H) across the Ta₂N₂ core of 2 could regenerate the starting tetrahydride 1 and produce a functionalized hydrazine moiety (N_2E_4) . Since addition of N_2 to 1 reforms the dinitrogen complex 2, this could result in a catalytic sequence.

To test this hypothesis, we have examined the reaction of **2** with a number of simple hydride reagents, and preliminary communications have already been published (22, 23). In the case where E-H is 9-borabicyclo[3.3.1]nonane (9-BBN), one E-H addition occurs cleanly; however, a catalytic cycle was precluded because of an ancillary ligand dominated rearrangement. Nevertheless, this work did allow the discovery of a new type of N—N bond cleavage process that results from functionalization of coordinated N₂. In this paper, we report the full details of the reaction of the dinitrogen complex **2** with some primary and secondary boranes.

Results and discussion

As summarized in Scheme 2, our initial attempt at E-H addition to 2 using 9-BBN resulted in the first example of a hydroborated dinitrogen complex (3). It was found that addition product 3 is thermally unstable and undergoes H_2 elimination and N—N bond cleavage, presumably via the unobserved intermediate A, followed by silicon migration from the ancillary ligand to the bridging nitride to generate 4. We presume that the final step is elimination of benzene via the B—H bond and the phenyl of the Ta=N-Ph unit to generate the final imide-nitride 5. Postulation of this proposed scheme was facilitated by the X-ray crystal structures of intermediates 3 and 4, and final product 5, along with detailed labeling experiments (22).

Attempted second hydroboration — Synthesis and characterization of [NPN]Ta(H)(μ -N₂-B(C₆H₁₁)₂)(μ -H)₂Ta[NPN] (6)

Having established that hydroboration of 2 with 9-BBN leads to N-N bond cleavage and the formation of reactive nitrides, we examined multiple additions of 9-BBN to further test the catalytic plan shown in Scheme 1. Addition of 2 or more equiv. of 9-BBN to 2 resulted in a complicated mixture of products as observed by ³¹P NMR spectroscopy. Although none of the products were immediately identifiable, there did seem to be a major product present; unfortunately, it could not be separated from the other materials present. Fortuitously, addition of 1 equiv. of 9-BBN to imide-nitride 5 resulted in the clean formation of this same major product unencumbered by impurities. This new complex 6 has two resonances (1:1 integration) in its ³¹P NMR spectrum that are distinct from those of 5, and the ¹H NMR spectrum does not feature resonances indicative of tantalum hydrides. To determine its identity, crystals of 6 were obtained from a cooled THF solution and subjected to X-ray diffraction analysis.

The solid-state molecular structure of **6** (Fig. 1) shows that a simple Lewis acid – base reaction between the bridging nitride in **5** and the B atom of 9-BBN has taken place. This second equiv. of 9-BBN occupies a position roughly equal to that of the single 9-BBN fragment in intermediate **4** (Scheme 2). The N3—B2 bond length of 1.516(5) Å suggests a N—B single bond (24). The borylimido group is deflected towards the phosphine donor Pl by the presence of the second equiv. of 9-BBN. Other than this, complex **6** is very similar in structure to **5**.

In solution, the presence of the boron hydride is implied by a broad ¹H NMR resonance integrating to one proton at δ 4.32 ppm. In the solid state, hydrogen atom H71 was reFig. 1. ORTEP drawing of the solid-state molecular structure of 6 as determined by X-ray crystallography (ellipsoids at 50%) probability). Silvl methyls and phenyl ring carbons other than ipso are omitted for clarity. H71 was refined isotropically. Selected bond lengths (Å), bond angles (°), and torsion angles (°): Ta1-N1 1.824(3), N1-B1 1.404(5), Ta1-N2 2.175(3), N2-Ta2 1.947(3), Ta2-N3 1.854(3), N3-Ta1 2.156(3), N3-B2 1.516(5), N2-Si1 1.738(3), Ta1-N4 2.126(3), Ta1-P1 2.5825(10), Ta2-N5 2.091(3), Ta2-N6 2.048(3), Ta2-P2 2.7737(10); Ta1-N2-Ta2 93.87(11), N2-Ta2-N3 91.05(12), Ta2-N3-Ta1 97.23(13), N3-Ta1-N2 77.58(11), Ta1-N1-B1 179.3(3), Ta1-N3-B2 88.6(3), N1-Ta1-P1 86.99(10), N1-Ta1-N4 123.12(13), Ta1-N2-Si1 139.05(16), N3-Ta2-N5 101.25(13), N3-Ta2-N6 103.04(12), N3-Ta2-P2 171.01(9), Ta1-N2-Ta2-N3 3.87(11), Ta1-Ta2-N2-Si1 6.9(6), N1-Ta1-N2-Ta2 -117.54(13), P1-Ta1-Ta2-P2 13.46(4), Ta2-N2-Ta1-N4 98.92(14).

fined isotropically, and thus its position as shown in Fig. 1 is likely based on the structures obtained for 4 as well as the position and coordination geometry of B2. This reaction is shown in eq. [1]. Significantly, the intramolecular reaction to give 5 from 3 proceeds whether additional hydroboration

reagent is present or not; as mentioned above, the 2:1 reaction between 9-BBN and **2** also gives mostly **6** when this reaction is monitored by 31 P NMR spectroscopy, indicating that 9-BBN is not competent to intercept the nascent nitrido intermediate postulated in the transformation of **4** to **5**, either

by hydroboration or simple Lewis acid adduct formation. This precludes hydroboration as the appropriate E-H addition to completely satisfy the proposal of Scheme 1.

A homologous series of complexes prepared with dicyclohexylborane (Cy₂BH) and thexyl borane (H₂BCMe₂CHMe₂)

We wondered about the generality of the cascade of reactions shown in Scheme 2. The ability to cleave coordinated N_2 and to generate a new N—B bond was incentive to examine whether or not other borane reagents would engage in similar outcomes or in fact open up new reaction pathways. Given the ready availability of different organoborane reagents, this seemed worthwhile.

The reaction of 1 equiv. of dicyclohexylborane (Cy₂BH) with **2** in toluene gives [NPN]Ta(H)(μ - η ¹: η ²-NNBCy₂)(μ -H)₂Ta[NPN] (**7**) in 93% yield after stirring for 12 h (eq. [2]).

Identification of 7 was facilitated by the similarity of its ¹H and ³¹P NMR spectra to those of the initial 9-BBN adduct (3). Thus, the ¹H NMR spectrum of 7 indicates C_1 solution symmetry (eight silyl methyl resonances and two separate one-proton resonances associated with bridging hydrides are present), and a new resonance at δ 16.04 ppm implies the existence of a new terminal hydride, as was found for 3. The solid-state molecular structure of 7 was not established.

Does 7 decompose in the same manner as 3 (Scheme 2)? Toluene or THF solutions of 7 show conversion to [NPµ- $NTa(=NPh)(\mu-NB(H)Cy_2)Ta[NPN]$ (8) in similar yield and on a time scale comparable to the decomposition of 3 into 4. Therefore, hydroboration and N-N bond cleavage are both possible using Cy₂BH interchangeably with 9-BBN. The solid-state molecular structure of 8 has been determined and it is shown in Fig. 2. The relative orientations of the phenylimido ligand and H85 are similar to 4. The fact that N-N bond scission and silvl group migration from an [NPN] ligand amide to the new dinitrogen-derived nitrido ligand have occurred in an exactly analogous fashion is evident. Bond lengths and angles are comparable to those of 4, except that the [NPN] ancillary ligand bound to Ta2 of complex 8 is rotated by 70° about the Ta-Ta axis as compared to its position in 4.

Like its 9-BBN analogue 4, 8 is observed via NMR spectroscopy to eliminate benzene in d^8 -THF solution, and at the

Fig. 2. ORTEP drawing (spheroids at 50% probability) of **8** ([NP μ -N]Ta(=NPh)(μ -NB(H)Cy₂)Ta[NPN]). Silyl methyl and phenyl ring carbons other than ipso omitted for clarity. H85 was located in the electron difference map and refined isotropically. Selected bond lengths (Å), bond angles (°), and torsion angles (°): Ta1—N1 2.142(3), Ta1—N2 2.191(3), Ta1—N3 1.788(3), Ta1—N4 2.146(3), Ta1—P1 2.6370(11), N1—B1 1.532(7), B1—H1 1.59(6), Ta1—H1 1.90(8), N2—Si1 1.738(3), N1—N2 2.675(3), Ta2—N5 2.070(3), Ta2—N6 2.066(3), Ta2—P2 2.7897(10); N1-Ta1-N2 76.31(12), Ta1-N2-Ta2 94.88(12), N2-Ta2-N1 90.40(13), Ta2-N1-Ta1 98.41(13), Ta1-N1-B1 89.8(2), N1-B1-H1 190.2(6), N1-Ta1-N3 117.17(13), N1-Ta1-N4 114.08(11), N1-Ta1-P1 136.84(8), N1-Ta2-N5 114.35(12), N1-Ta2-N6 117.00(13), N1-Ta2-P2 99.46(9), Ta1-N2-Ta2-N1 0.25(11), P1-Ta1-Ta2-P2 –143.96(4), N1-Ta1-N2-Si1 -176.8(2), N2-Ta1-N1-B1 -169.8(2).

same time, ³¹P NMR resonances of a new species (9) arise. Identification of this complex as ([NPµ-N]Ta(=NBCy₂)(µ-N)Ta[NPN] was made by ¹H and ³¹P NMR spectroscopy in analogy to that already shown in Scheme 2. This new imide-nitride 9 forms cleanly from 8 in an overall yield of 83% as measured by ³¹P NMR spectroscopy against an internal reference. This is an improvement over the conversion of 4 to 5, in which many other ³¹P NMR-active sideproducts were detected. Although the change from 9-BBN to dicyclohexylborane does not significantly attenuate hydroboration of 1 or N-N bond cleavage, it did increase the yield of 9 vs. the yield of 5. In Scheme 3, this chemistry is summarized starting with hydroboration adduct 7; loss of H₂ triggers N—N bond cleavage, presumably through an unobserved intermediate such as **B**, which then undergoes silicon migration from the ancillary [NPN] ligand to generate 8 and finally 9 via loss of benzene. Presumably, addition of another equivalent of dicyclohexylborane to 9 would produce an adduct similar to 6 in eq. [1]; however, this was not pursued.

Since hydroboration of **2** and N—N bond cleavage occurred for the secondary boranes 9-BBN and Cy_2BH , it was of interest to examine the course of the reactions with a priScheme 3.

mary borane. The presence of another boron hydride for intramolecular reactions after an initial hydroboration suggested the possibility of different post-hydroboration reaction paths including another potential opportunity to form N—H bonds. The 1:1 reaction between **2** and thexyl borane (H₂BCMe₂CHMe₂) proceeds to completion over 12 h as shown in eq. [3] to give [NPN]Ta(H)(μ - η ¹: η ²-NNB(H)C₆H₁₃)(μ -H)₂Ta[NPN] (**10**) in 92% yield.

Although crystals suitable for X-ray diffraction were not isolated, the ¹H NMR spectrum of **10** shows the expected C_1 symmetry and the new resonance characteristic of a terminal hydride at δ 15.52 ppm, analogous to that already observed for **3** and **7**. The remaining boron hydride is evident as a broad singlet at δ 4.42 ppm that integrates to one proton.

As for complexes **3** and **7**, solutions of **10** are thermally unstable. The rearranged product (**11**) has no resonances suggestive of bridging or terminal hydride ligands in its ¹H NMR spectrum, and the ³¹P NMR resonances of **11** do not unequivocally make it a sister complex to **4** or **8**. The ¹H NMR spectrum is indicative of C_1 symmetry, and the resonances can be assigned as [NPµ-N]Ta(=NPh)(µ-NB(H)₂C₆H₁₃)Ta[NPN], as shown in eq. [4].

Satisfactory elemental analysis was obtained for this formulation, but the solid-state molecular structure of 11 has not been established. The only indication that **11** might be other than that suggested is that it does not degrade via elimination of benzene to a congener of 5 or 9. Instead it can be observed by ³¹P NMR spectroscopy to convert into a number of different products over a week. None of these were spectrally related to 5 or 9. Hydroboration of 2 with thexyl borane may lead to new rearrangements for 8 that were not observed with secondary boranes, but characterization of the resulting complexes has not been possible. It is likely that the additional B-H functionality coupled with the already documented propensity for ancillary ligand rearrangements in this system renders this combination too reactive. With group 6 dinitrogen complexes, the reaction with the yl borane results in a totally different and distinct outcome than described herein (25) (Table 1).

Synthesis of $([NPN]Ta)_2(\mu-\eta^1:\eta^2-NN-B(H)(C_6F_5)_2)(\mu-H)_2$ (12)

Although the dinitrogen unit of **2** can be derivatized by hydroboration, it is not clear how to remove the functionalized dinitrogen moiety or the dinitrogen-derived atoms in the descendant complexes from the bimetallic core, because the Ta–N interactions remain quite strong. It was postulated that a more Lewis acidic borane might react in a similar manner to 9-BBN, but would remove additional electron density from the dinitrogen moiety, and thus greatly weaken the Ta–N bonds. A straightforward synthesis of the strongly Lewis acidic secondary borane HB(C₆F₅)₂ has recently been reported (26, 27), and so the reactivity of this borane with **2** was investigated.

The reaction of HB(C₆F₅)₂ with complex **2** occurs immediately; however, the colour of the solution changes from the red-brown of **2** to a dark yellow-brown colour, rather than to an orange colour as observed for the B-H addition adducts **3**, **7**, and **10**. Two new resonances are observed in the ³¹P NMR spectrum at δ 10.0 and δ 22.8 with a J_{PP} value of 25.1 Hz. A broad peak at δ 4.7 in the ¹H NMR spectrum integrates to a single proton. The location and broadness of this resonance identifies it as a hydrogen atom bound to boron. A similar peak is observed in the ¹H NMR spectrum of the starting borane HB(C₆F₅)₂. The ¹⁵N NMR spectrum of the ¹⁵N₂enriched complex ¹⁵N₂-**12**, which was prepared by the reaction of ¹⁵N₂-**2** with HB(C₆F₅)₂, contains two resonances, at δ -46.9 and δ 24.0. The resonance at δ -46.9 is a doublet of doublets, with a ²J_{NP} value of 25.9 Hz and a ¹J_{NN} value of 15.3 Hz. As for ¹⁵N₂-**2**, the chemical shift of this resonance and the large coupling to ³¹P indicates that this is the end-on

nitrogen. The chemical shift of the second ¹⁵N resonance ($\delta = 24.0$) is much closer to that observed in the B(C₆F₅)₃ adduct of ¹⁵N₂-2 (δ 2.4) than to ¹⁵N₂-3 (δ –114.8), where a tantalum hydride bond is formed. This reaction product is, therefore, not related to complexes 3, 7, and 10, which are the products of B-H addition. Rather, this spectral information indicates that 12 is more closely related to the Lewis acid – base adducts of 2 with B(C₆F₅)₃, GaMe₃, and AlMe₃, (28) and can be assigned as [NPN]Ta(μ - η ¹: η ²-NN-B(H)(C₆F₅)₂)(μ -H)₂Ta[NPN]. As for these complexes and parent complex 2, the solution symmetry of 12 is C_s as evidenced by the four unique silyl methyl resonances in its ¹H NMR spectrum. The formation of complex 12 is illustrated in eq. [5].

This assignment was confirmed by X-ray crystallography. An ORTEP drawing of the solid-state molecular structure of **12** is shown in Fig. 3. Hydrides were not located in the diffraction experiment, but the Ta_2N_2 core bonding and the relative disposition of the ancillary [NPN] ligands is reminiscent of parent complex **2** and of its Lewis acid adducts.

Upon hydroboration, the N—N bond was elongated from 1.319(4) Å in 2 to 1.411(15) Å in 3. The same bond in 12 is only marginally elongated as compared to the starting dinitrogen complex and the other metric parameters of the Ta₂N₂ core are similar. Therefore, derivatizaton of the coordinated N₂ unit of 2 with strongly Lewis acidic boranes does not affect core bonding. Like 2 and its Lewis adducts, 12 is a stable molecule as compared to 3, 7, and 10, and it shows no propensity to undergo the reductive elimination and N—N bond scission common to these complexes. It seems that addition of the H—B bond across the exposed Ta=N bond of 2 is a precondition for these processes. The theoretically predicted reversal of the polarity of this bond in HB(C₆F₅)₂ vs. dialkylboranes may preclude this reaction, implying that E—H bond polarity is a important consideration in selecting

	$[NP\mu-N]Ta(=N-BC_8H_{14})(\mu-N-B(H)C_8H_{14})Ta[NPN]$ (6)	$[NP\mu-N]Ta(=NPh)(\mu-N-B(H)(C_{6}H_{11})_{2})Ta[NPN] (8)$	([NPN]Ta) ₂ (µ-NN- B(H)(C ₆ H ₅) ₂)(µ-H) ₂ (11)
CCDC registry	250128	250129	250130
Formula	C ₅₈ H ₈₆ N ₆ P ₂ Ta ₂ Si ₄ B ₂ [C ₆ H ₆]	$C_{67}H_{93}N_6Ta_2P_2Si_4B$	$C_{60}H_{65}BF_{10}N_6P_2Si_4Ta_2(C_6H_6)_{2.5}$
FW	1581.39	1518.70	1802.46
Colour, habit	Yellow, chip	Yellow, chip	Dark, block
Crystal dimensions (mm)	$0.20 \times 0.15 \times 0.15$	$0.35 \times 0.20 \times 0.10$	$0.32 \times 0.24 \times 0.16$
Crystal system	Monoclinic	Triclinic	Monoclinic
Space group	$P2_1/n$ (No. 14)	$P\overline{1}$ (No. 2)	$P2_1/n$ (No. 14)
a (Å)	11.7634(4)	12.0875(4)	17.2272(3)
<i>b</i> (Å)	25.6823(8)	13.7220(4)	24.5044(2)
c (Å)	24.0178(9)	20.9574(8)	18.4711(3)
α (°)	90	91.266(3)	90
β (°)	96.180(2)	90.784(3)	95.071(1)
γ (°)	90	84.952(3)	90
V (Å ³)	7213.9(4)	3461.5(2)	7766.9(2)
Ζ	4	2	4
ρ_{calcd} (g/cm ³)	1.46	1.46	1.54
<i>F</i> (000)	3208.00	1538.00	3596.00
μ (MoK α) (mm ⁻¹)	3.181	3.312	2.988
Transmission factors	0.6368-1.0000	0.7278-1.0000	0.8192-1.0000
2θ _{max} (°)	55.8	55.7	56.0
Total no. of reflns.	62 376	31 854	46 043
No. of unique reflns.	16 351	14 230	15 345
R _{merge}	0.053	0.062	0.043
No. reflns with $I \ge n \sigma(I)$	12735 (n = 2)	11 678 $(n = 2)$	$15\ 345\ (n=2)$
No. of variables	775	720	881
R (F^2 , all data)	0.043	0.039	0.036
R_w (F^2 , all data)	0.068	0.074	0.076
$R (F, I > n\sigma(I))$	0.029	0.029	0.046
R_w (F, I > $n\sigma(I)$)	0.062	0.071	0.081
GOF	0.94	0.098	1.088

Table 1. X-ray crystallographic information for complexes 6, 8, and 11.³

Note: Rigaku/ADSC CCD diffractometer, $R = \sum ||F_0^2| - |F_c^2|| / \sum |F_0^2|$; $R_w = (\sum w (|F_0^2| - |F_c^2|)^2 / \sum w |F_0^2|^2)^{1/2}$.

reagents for any scheme bent on using 2 for catalytic functionalization of N_2 .

Summary

The initial study of the hydroboration of a dinuclear tantalum dinitrogen complex with 9-BBN has been extended to other monoalkyl- and dialkylboranes. In all cases, the N₂ complexes, derivatized by H—B bond addition across the exposed Ta=N bond, spontaneously undergo reductive elimination of two bridging hydrides as H₂ coupled to N—N bond cleavage without loss of the new B—N bond. This cascade of reactions is only somewhat attenuated by different substituents on the hydroboration reagent. Subsequent addition reactions across new Ta=N moieties do not occur, but the additional equivalents of hydroboration reagent can be incorporated into the complex as alkylborohydride adducts. Bis(pentafluorophenyl)borane HB(C₆F₅)₂ fails to react with the starting dinitrogen complex 2 in the same manner as the alkylboranes; instead, a stable adduct is formed, likely a result of the enhanced Lewis acidity of the boron centre owing to the presence of the perfluorophenyl substituents. This is summarized in Scheme 4.

Experimental section

General considerations

Unless otherwise stated, all manipulations were performed under an atmosphere of dry oxygen-free dinitrogen by means of standard Schlenk or glovebox techniques (Vacuum Atmospheres HE-553-2 glovebox equipped with a MO-40-2H purification system and a -60 °C freezer). Anhydrous hexanes and toluene were purchased from Aldrich, sparged with dinitrogen, and passed through columns containing activated alumina and Ridox catalyst before use. Anhydrous diethylether was stored over sieves and distilled from so-

³Supplementary data may be purchased from the Directory of Unpublished Data, Document Delivery, CISTI, National Research Council Canada, Ottawa, ON K1A 0S2, Canada (http://cisti-icist.nrc-cnrc.gc.ca/irm/unpub_e.shtml for information on ordering electronically). CCDC 250128–250130 contain the crystallographic data for this manuscript. These data can be obtained, free of charge, via ww.ccdc.cam.ac.uk/conts/retrieving.html (or from the Cambridge Crystallographic Data Centre, 12 Union Road, Cambridge CB2 1EZ, UK; fax +44 1223 336033; or deposit@ccdc.cam.ac.uk).

Fig. 3. ORTEP depiction of the solid-state molecular structure of $([NPN]Ta)_2(\mu-\eta^1:\eta^2-NN-B(H)(C_6F_5)_2)(\mu-H)_2$ (**12**) as determined by X-ray crystallography. The bridging hydrides and the hydrogen bound to boron were not located. The silyl methyl groups and fluorine atoms are omitted for clarity, and only the ipso carbons of the PPh and NPh groups are shown. Selected bond lengths (Å) and bond angles (°): N5—N6 1.368(4), Ta1—Ta2 2.8903(2), Ta1—N5 2.186(3), Ta1—N6 1.964(3), Ta2—N5 1.878(3), N6—B1 1.557(5), Ta1—P1 2.6089(10), Ta2—P2 2.6265(10); Ta1-N5-Ta2 90.36(12), Ta1-N6-N5 79.8(2), Ta1-N6-B1 155.6(3).

dium benzophenone ketyl under argon. Pentane was stored over sieves and distilled from sodium benzophenone ketyl solublized by tetraglyme under dry dinitrogen prior to storage over a potassium mirror. Tetrahydrofuran was heated at reflux over CaH_2 prior to distillation from sodium benzophenone ketyl under argon. Nitrogen gas was dried and deoxygenated by passage through a column containing activated molecular sieves and MnO.

Deuterated benzene was dried by heating at reflux with sodium–potassium alloy in a sealed vessel under partial pressure, then trap-to-trap distilled, and freeze–pump–thaw degassed three times. Deuterated tetrahydrofuran and toluene were dried by refluxing with molten potassium metal in a sealed vessel under vacuum, then trap-to-trap-distilled, and freeze–pump–thaw degassed three times. Unless otherwise stated, ¹H, ³¹P, ¹H{³¹P}, ¹³C, ¹¹B, ¹⁵N, ²⁹Si-DEPT, and two-dimensional NMR spectra were recorded on either a Bruker AMX-500 instrument (5 mm BBI probe) operating at 500.1 MHz for ¹H or a Bruker AVA-400 instrument (5 mm BBI probe) operating at 400.1 MHz for ¹H. ¹H NMR spectra were referenced to residual proton in deuterated solvent as follows: C₄D₇HO (δ 3.58 ppm), C₆D₅H (δ 7.15 ppm), and

Scheme 4.

 C_7D_7H (δ 2.09 ppm). ³¹P NMR spectra were referenced to external P(OMe)₃ (δ 141.0 ppm with respect to 85% H₃PO₄ at δ 0.0 ppm) or internal P(OMe)₃ flame-sealed inside a 1 mm × 25 mm glass capillary tube if required, ¹³C NMR spectra to ¹³CC₅D₆ (δ 128.4 ppm) and ¹³CD₂Cl₂ (δ 54.0 ppm), ¹¹B spectra to neat BF₃·Et₂O (δ 0.0 ppm), ¹⁵N spectra to external nitromethane at 0.0 ppm, and ²⁹Si to Me₄Si 50% in CDCl₃ (δ 0.0 ppm). Elemental analyses were performed by Mr. P. Borda and Mr. M. Lakha, of The University of British Columbia Department of Chemistry.

The syntheses of complexes **1**, **2** (21), **3**, **4**, and **5** (22), dicyclohexylborane (29), thexyl borane (30), and $HB(C_6F_5)_2$ (27) were performed as described in the literature.

$[NP\mu-N]Ta(=N-BC_8H_{14})(\mu-NB(H)C_8H_{14})Ta[NPN] (6)$

To a stirred 15 mL toluene solution of 5 (298 mg, 0.229 mmol) was added dropwise 0.25 mL (1.1 equiv.) of 1.0 mol/L 9-BBN solution in THF. The resulting mixture was stirred overnight and the ³¹P NMR spectrum of a small portion indicated that the reaction had proceeded to consume all of complex 5, giving exclusively resonances of 6. After evaporation of solvent and precipitation from pentane, 241 mg (0.169 mmol, 74% yield) of 6 was recovered on a frit. ¹H NMR (C₆D₆, 300 K, 400 MHz) δ: -0.69, -0.21, 0.05, 0.13, 0.25, 0.34, 0.43, (s, 3H each) SiCH₃; 0.84, 0.97 (d, 1H each) PCH_2 , complicated overlapping multipets from 0.70 to 2.26 (total 39H), B-C₈ H_{14} and PC H_2 (solvent was contaminated with a small amount of hexanes) 4.32 (b, 1H), B-H; 6.73, 6.79, 6.81, 6.85, 6.93, 7.07, 7.09, 7.20 (s, d, t, some peaks obscured by solvent) C₆H₅-N and C₆H₅-P; (7.51 (d, 2H, $J_{\rm HH}$ = 6.95 Hz), 7.94 (d, 2H, $J_{\rm HH}$ = 7.05 Hz), o-C₆H₅-P. ³¹P NMR (C_6D_6 , 300 K, 161.9 MHz) & -12.52 (b), 27.26 (s). Anal. calcd. for C₅₈H₈₆B₂N₆P₂Si₄Ta₂: C 48.88, H 6.08, N 5.90; found: C 49.12, H 6.23, N 5.81.

[NPN]Ta(H)(μ - η ¹: η ²-NNBCy₂)(μ -H)₂Ta[NPN](7)

Toluene (25 mL) was added to an intimate mixture of dry 2 (0.412 g, 0.327 mmol) and white solid dicyclohexylborane (58.2 mg, 1 equiv.) in a glove box. The resulting mixture was stirred vigorously overnight, the solvent was evaporated, and the residues were triturated under hexanes, giving 0.438 mg (0.305 mmol, 93.2% yield) of **7**. ¹H NMR (500.1 MHz, C_6D_6 , 300 K) δ : -0.37, -0.22, -0.17, -0.05, -0.10, -0.01, 0.09, 0.14 (s, 24H total), SiCH₃; 0.28, 0.40, 0.64, 0.73, 0.77, 0.86, 1.09, 1.15 to 1.34 (broad), 1.47, 1.59,

and 1.77 (broad overlapping resonances), cyclohexyl and PCH₂; 6.61, 6.66, 6.73, 6.82, 6.88, 6.96, 7.13 to 7.26 (overlapping), 7.29, 7.38, and 7.70 (overlapping doublets, triplets, 20H total, some resonances obscured by solvent) P-C₆H₅ and N-C₆H₅; 8.14 (d, $J_{PH} = 6.38$ Hz), 8.24 (d, $J_{PH} = 6.82$ Hz), *o*-P-C₆H₅; 10.70 and 11.51 (d, 1H each, $J_{HH} = 10.0$ Hz) μ -H; 16.04 (d, $J_{PH} = 14.6$ Hz), Ta-H. ¹³C NMR was not recorded. ³¹P NMR (202.5 MHz, C₆D₆, 300 K) δ : 7.98 (d, $J_{PP} = 10.2$ Hz), 20.0 (d, $J_{PP} = 10.2$ Hz). Anal. calcd. for C₆₀H₈₇BN₆P₂Si₄Ta₂: C 50.07, H 6.09, N 5.84; found: C 50.35, H 6.34, N 5.48.

Decomposition of 7 to [NPµ-N]Ta(=NPh)(µ-NB(H)Cy₂)Ta[NPN] (8)

A capped THF solution of 396 mg (0.275 mmol) 7 was left in a glove box at ambient temperature for 3 weeks and then cooled in a -60 °C freezer, giving crystals of 8. Yield 0.186 g, 0.129 mmol, 47%. ¹H NMR (400.1 MHz, C₇D₈, 300 K) & -1.13, -0.90, -0.09, -0.15, -0.36, 0.18, 0.34 (s, 24H total), SiCH₃; 0.50, 1.16 (d, 1H each) PCH₂; -0.01, 0.68, 0.87, 1.06, 1.33, 1.45, 1.48 (broad overlapping multiplets, total 26H) B-C₆ H_{11} and PC H_2 ; 4.09 (b, FWHM 32 Hz, 1H) BH; 6.28, 6.30, 6.34, 6.40, 6.50, 6.74, 6.83, 6.94, 7.00, 7.11, 7.18 (overlapping doublets, triplets, 20H total, some resonances obscured by solvent) $P-C_6H_5$ and N- C_6H_5 ; 7.84 (d, $J_{PH} = 6.59$ Hz), 7.49 (d, $J_{PH} = 7.06$ Hz), (10H total) o-P-C₆ H_5 . ¹³C NMR (100.6 MHz, C₇D₈, 300 K) δ : -1.77, -0.80, -0.64, 0.30, 2.67, 2.75, 3.30, 5.39, SiCH₃; 32.85 (b), B-C_{ipso} of cyclohexyl; 11.14, 15.45, 18.19, 25.93, 26.05, CH₂ of cyclohexyl; 20.99, 25.32, 26.05, 26.41, 27.16, 29.99, 30.49, 31.58, P-CH₂; 118.27, 119.03, 120.98, 122.79, 123.16, 123.29, 125.70, 126.98, 127.15, 127.51, 127.74, 128.56, 133.56, 135.84 (some resonances obscured by solvent), $P-C_6H_5$ and $N-C_6H_5$; 127.62, 131.96, $o-P-C_6H_5$; 151.24, 158.19, ipso-P-C₆H₅. ³¹P NMR (161.9 MHz, C₇D₈, 300 K) δ : -2.30 (d, J_{PP} = 3.1 Hz), 28.30 (d, J_{PP} = 3.1 Hz). Anal. calcd. for C₆₀H₈₅BN₆P₂Si₄Ta₂: C 50.14, H 5.96, N 5.85; found: C 50.28, H 6.13, N 5.46.

Decomposition of 8 to [NPµ-N]Ta(=NBCy₂)(µ-N)Ta[NPN] (9)

A d^8 -THF solution of **8** suitable for NMR spectroscopy in a Wilmad NMR tube capped with a plastic stopper and sealed with ParaFilm laboratory film and bearing a sealed capillary containing internal standard was left in a glove box for 3 weeks. Spectra were acquired intermittently. After this time, the ³¹P and ¹H NMR spectra were exclusively that of 8, and the integration with respect to internal standard allowed evaluation of 83% yield. The total integration of other ³¹P NMR active resonances was 6%. ¹H NMR (400.1 MHz, C₇D₈, 300 K) δ: -1.10, -0.88, -0.34, -0.13, -0.02, 0.18, 0.20, 0.33 (s, 3H each), SiCH₃; 0.49, 0.75, 0.89, 1.17, 1.21, 1.31, 1.55 (d, 1H each), P-CH₂; 0.6-1.6 (complicated overlapping multiplets, 22H total), B-(C_6H_{11})₂; 3.81 (b, FWHM 28 Hz, 1H) B-H; 6.27, 6.34, 6.51, 6.57, 6.63, 6.67, 6.77, 6.83, 6.86, 6.95, 6.99, 7.03, 7.11, 7.16, 7.42, 7.57 (d, t, overlapping, 26H total) $P-C_6H_5$ and $N-C_6H_5$; 7.47, 7.83 (d, 2H each), o-P- C_6H_5 . ³¹P NMR (161.9 MHz, C_7D_8 , 300 K) δ : 0.76 (d, J_{PP} = 5.94 Hz), 17.41 (d, J_{PP} = 5.94 Hz). Elemental analysis was not obtained.

$[NPN]Ta(H)(\mu-\eta^{1}:\eta^{2}-NNB(H)C_{6}H_{13})(\mu-H)_{2}Ta[NPN] (10)$

To a stirred toluene solution of 1 (0.336 g, 0.266 mmol) was added 0.54 mL (0.27 mmol, 1.02 equiv.) of freshly prepared thexyl borane (0.5 mol/L in THF). After stirring overnight the solvents were evaporated, leaving an orange residue that was triturated under hexanes and recovered on a frit, giving 0.332 g (0.244 mmol, 91.8% yield) of solid pale orange 10. ¹H NMR (400 MHz, C_6D_6 , 300 K) δ : -0.32, -0.14, -0.05, 0.11, 0.17, 0.19, 0.25, 0.34 (s, 3H each), SiCH₃; 1.21, 1.41, 1.45, 1.59, 1.61, 1.67, 1.78, 1.81 (d, 1H each) PCH₂; 0.82, 0.89 (d, 3H each) 1.11, 1.23 (s, 3H each), B-C(CH₃)₂CH(CH₃)₂; 1.64 (m, ¹H) B-C(CH₃)₂CH(CH₃)₂; 4.42 (b, ¹H) B-*H*; 5.96, 6.07, 6.22, 6.28, 6.35, 6.66, 6.91, 6.94, 7.01, 7.12, 7.20, 7.22, 7.25 (d, t, total 26H), P-C₆H₅ and N-C₆H₅; 7.71, 7.92 (d, 2H each) o-P-C₆H₅; 10.2, 11.6 (d, ¹H each) Ta μ H; 15.52 (s, ¹H) TaH. ³¹P NMR (161.9 MHz, C_6H_6 , 300 K) δ : 8.73 (d, J_{PP} = 15.3 Hz), 24.16 (d, $J_{PP} = 15.3$ Hz). Anal. calcd. for $C_{54}H_{79}BN_6P_2Si_4Ta_2$: C 47.72, H 5.86, N 6.18; found: C 47.32, H 6.26, N 6.12.

$[NP\mu-N]Ta(=NPh)(\mu-NB(H)_2C_6H_{13})Ta[NPN] (11)$

A 15 mL toluene solution of 0.328 g (0.241 mmol) 11 was allowed to stand in a glove box at ambient temperature for 8 days. The ³¹P NMR spectrum of a portion of this solution showed no remaining 10, and solvent was evaporated. Solid 11 (134 mg, 41% yield) was recovered on a frit after trituration under hexanes. ¹H NMR (400 MHz, $C_4D_8O_7$) 300 K) δ: -0.48, -0.43, -0.08, -0.02, 0.08, 0.11, 0.27, 0.34 (s, 3 H each, 24H total), SiCH₃; 0.55, 0.78, 1.20, 1.30, 1.57, 1.81, 2.22, 2.36 (d, 1H each), PCH₂; 0.73, 0.81, 1.40, 1.57 (s, 3H each), B-C(CH₃)₂CH(CH₃)₂; 3.58, 4.32 (b, 1H each), B-H; 6.76, 6.80, 6.96, 7.02, 7.05, 7.06, 7.09, 7.12, 7.14, 7.16, 7.19, 7.30, 7.33 (d, t, 1 and 2H each, 26H total) P- C_6H_5 and N- C_6H_5 ; 7.61, 8.02 (d, 2H each) P- C_6H_5 . ³¹P NMR (161.9 MHz, C₄D₈O, 300 K) δ: -6.68 (b), 18.55 (s). Anal. calcd. for C₅₄H₇₇BN₆P₂Si₄Ta₂: C 47.79, H 5.72, N 6.19; found: C 47.42, H 6.10, N 6.38.

$([NPN]Ta)_2(\mu-\eta^1:\eta^2-NNB(H)(C_6F_5)_2)(\mu-H)_2$ (12)

To a solution of 2 (0.7589 g, 0.6017 mmol) in 10 mL of C₆H₆ was added solid HB(C₆F₅)₂ (0.2081 g, 0.6017 mmol, 1.0 equiv.). The solution was allowed to stir for 3 h, and the product was then allowed to crystallize by slow evaporation. and collected yield The solid was dried, to $([(NPN]_2TaH)_2N_2(HB(C_6F_5)_2)$ as a brown solid (0.943 g, 97%). ¹H NMR (500 MHz, C₇D₈, 350 K) δ: -0.28, -0.07, -0.03, 0.03 (s, 24H total, SiCH₃), 0.61, 1.45, 1.68, 2.03 (AMX, 8H total, CH_2 ring), 4.7 (br, $W_{1/2} = 250$ Hz, 1H, BH), 6.77, 6.87, 6.94, 6.98, 7.06, and 7.20 (overlapping m, 26 H, NPh and PPh), 7.02 and 7.57 (m, 4H total, PPh o-H), 11.56 (dd, ${}^{2}J_{\text{HP}} = 20.9$ Hz, ${}^{2}J_{\text{HP}} = 17.3$ Hz, 2H, TaH). ¹H NMR (500 MHz, C₇D₈, 245 K) δ: -0.26, -0.26, -0.24, -0.17, 0.00, 0.09, 0.11, 0.41 (s, 24H total, SiCH₃), 0.63, 1.05, 1.20, 1.28, 1.36, 1.39, 1.67, 2.73 (AMX, 8H total, CH₂) ring), 4.7 (br, 1H, BH), 5.80, 6.16, 6.51, 6.75, 6.85 (m, 1H each, NPh or PPh) 6.91-7.37 (overlapping m, 18 H, NPh and PPh), 7.49 (m, 2H, PPh-o-H), 7.53 (m, 2H, PPh or NPh), 7.88 (m, 2H, PPh-*o*-*H*), 11.00 (br m, ${}^{2}J_{\text{HH}} = 14.2$ Hz, 1H, Ta*H*), 11.67 (ddd, ${}^{2}J_{\text{HH}} = 14.2$ Hz, ${}^{2}J_{\text{HP}} = 14.7$ Hz, ${}^{2}J_{\text{HP}} = 31.9$ Hz, 1H, Ta*H*). 31 P NMR (C₇D₈, 299 K) & 10.0 (d, ${}^{2}J_{\text{PP}} = 25.1$, [NPN] ligand), 22.8 (d, ${}^{2}J_{\text{PP}} = 25.1$, [NPN] ligand). Anal. calcd. for $C_{60}H_{65}BF_{10}N_6P_2Si_4Ta_2$: C 44.84, H 4.08, N 5.23; found: C 44.77, H 4.13, N 5.10.

$([NPN]Ta)_2(\mu-\eta^1:\eta^2-15N^{15}NB(H)(C_6F_5)_2)(\mu-H)_2$ (15N₂-12)

The ¹⁵N-labeled analogue was prepared in a manner identical to that used for **12**, except for using the ¹⁵N-labeled precursor ¹⁵N₂-2. ³¹P NMR (C₇D₈, 299 K) & 10.0 (dd, $J_{PP} = 25.1$ Hz, ² $J_{PN} = 17.2$ Hz, [NPN] ligand), 22.8 (d, $J_{PP} = 25.1$ Hz, [NPN] ligand). ¹⁵N NMR (C₇D₈, 299 K) & -48.1 (dd, ¹ $J_{NN} = 16.2$ Hz, ² $J_{NP} = 25.1$ Hz), 11.5 (d, ¹ $J_{NN} = 16.2$ Hz).

Acknowledgements

The authors thank the Natural Sciences and Engineering Research Council of Canada (NSERC) for funding (PGS-A, PGS-B, and PDF awards to B.A.M. and S.A.J., Discovery Grant to M.D.F.).

References

- M.D. Fryzuk and S.A. Johnson. Coord. Chem. Rev. 200–202, 379 (2000).
- 2. S. Gambarotta. J. Org. Chem. 500, 117 (1995).
- 3. M. Hidai and Y. Mizobe. Chem. Rev. 95, 1115 (1995).
- 4. B.A. MacKay and M.D. Fryzuk. Chem. Rev. 104, 381 (2004).
- 5. C.M. Kozak and P. Mountford. Angew. Chem. Int. Ed. 43, 1186 (2004).
- 6. R. Schlögl. Angew. Chem. Int. Ed. 42, 2004 (2003).
- 7. D.V. Yandulov and R.R. Schrock. Science, 301, 76 (2003).
- J.A. Pool, E. Lobkovsky, and P.J. Chirik. Nature (London), 427, 527 (2004).
- 9. M. Hidai. Coord. Chem. Rev. 185-186, 99 (1999).
- 10. K. Hori and M. Mori. J. Am. Chem. Soc. 120, 7651 (1998).
- 11. M. Hori and M. Mori. J. Org. Chem. 60, 1480 (1995).

- 12. M. Akashi, Y. Sato, and M. Mori. J. Org. Chem. 66, 7873 (2001).
- K. Komori, H. Oshita, Y. Mizobe, and M. Hidai. J. Am. Chem. Soc. 111, 1939 (1989).
- M. Mori, K. Hori, M. Akashi, M. Hori, Y. Sato, and M. Nishida. Angew. Chem. Int. Ed. 37, 636 (1998).
- K. Ueda, Y. Sato, and M. Mori. J. Am. Chem. Soc. 122, 10722 (2000).
- 16. A.D. Allen and C.V. Senoff. Chem. Commun. 621 (1965).
- M.P. Shaver and M.D. Fryzuk. Adv. Synth. Catal. 345, 1061 (2003).
- 18. M. Hidai and Y. Mizobe. Metal Ions Biol. Syst. **39**, 121 (2002).
- S. Gambarotta. *In* Inorganic chemistry highlights. *Edited by* G. Meyer, D. Naumann, and L. Weseman. John Wiley and Sons, New York. 2002. p. 285.
- J. Chatt, J.R. Dilworth, and R.L. Richards. Chem. Rev. 78, 589 (1978).
- M.D. Fryzuk, S.A. Johnson, B.O. Patrick, A. Albinati, S.A. Mason, and T.F. Koetzle. J. Am. Chem. Soc. 123, 3960 (2001).
- M.D. Fryzuk, B.A. MacKay, S.A. Johnson, and B.O. Patrick. Angew. Chem. Int. Ed. 41, 3709 (2002).
- M.D. Fryzuk, B.A. MacKay, and B.O. Patrick. J. Am. Chem. Soc. 125, 3234 (2003).
- 24. M. Yalpani, R. Koester, and R. Boese. Chem. Ber. **126**, 285 (1993).
- 25. H. Ishino, Y. Ishii, and M. Hidai. Chem. Lett. 677 (1998).
- D.J. Parks, R.E.v.H. Spence, and W.E. Piers. Angew. Chem. Int. Ed. Engl. 34, 809 (1995).
- D.J. Parks, W.E. Piers, M. Parvez, R. Atencio, and M.J. Zaworotko. Organometallics, 17, 1369 (1998).
- 28. F. Studt, B.A. MacKay, S.A. Johnson, B.O. Patrick, M.D. Fryzuk, and F. Tuczek. Chem. Eur. J. 11, 604 (2005).
- H.C. Brown, M.C. Desai, and P.K. Jadhav. J. Org. Chem. 47, 5065 (1982).
- G. Zweifel and H.C. Brown. J. Am. Chem. Soc. 85, 2066 (1963).