Silyltrielane R'_nEHal_{3-n} (E = Al, Ga, In; R' = SitBu₂Ph): Synthesen, Charakterisierung, Strukturen [1]

Silyltrielanes $R'_n EHal_{3-n}$ (E = Al, Ga, In; R' = Si*t*Bu₂Ph): Syntheses, Characterization, Structures [1]

Nils Wiberg, Thomas Blank, Hans-Wolfram Lerner, Heinrich Nöth*, Tassilo Habereder* und Dieter Fenske*

Department Chemie der Universität München Butenandtstr. 5-13 (Haus D), D-81377 München * Kristallstrukturanalysen

Sonderdruckanforderungen an Prof. Dr. N. Wiberg. E-mail: niw@cup.uni-muenchen.de

Herrn Professor Dr. H. P. Fritz gewidmet

Z. Naturforsch. 56 b, 652-658 (2001); eingegangen am 2. Mai 2001

Silicon, Aluminium, Gallium

Water- and oxygen-sensitive compounds of the type R'_nEHal_{3-n} ($R' = SitBu_2Ph$; E = Triel) with or without donors, *viz*. R'AlBr₂, R'₃Al, R'GaCl₂'THF, R'GaCl₂, R'₃Ga, R'InCl₂•THF and R'₃In have been synthesized by reaction of EX₃ with NaSitBu₂Ph (prepared for this purpose) in the absence or presence of donors. The dihalides R'EHal₂ have also been obtained by reaction of R'₃E with EHal₃, whereas monohalides R'₂EHal are not accessible via these and other routes up to date. All trielanes have been characterized by NMR and the structures of the R'₃E compounds have been determined by X-ray analyses.

1. Einleitung

Wie in einer vorausgehenden Publikation angedeutet wurde [2], synthetisierten wir Supersilyltrielane $R_n^*EHal_{3-n}$ (E = Triel = B, Al, Ga, In, Tl; R^* = SitBu₃) in der Hoffnung, durch gezielte Dehalogenierung der betreffenden Trielane neuartige Trielcluster-Verbindungen zu erhalten. Von den möglichen, in Schema 1 aufgeführten Typen von Silyltrielanen $(R_3Si)_n EHal_{3-n}$ (vgl. hierzu [2] und dort zit. Lit.) konnten wir für $R_3Si = R^*$ donorhaltige Dihalogenide R*EHal₂•D, donorfreie Dihalogenide R^*EHal_2 (monomer im Falle E = B, sonst dimer) sowie donorfreie Monohalogenide R*2EHal synthetisieren, aber – als Folge des hohen Raumanspruchs der Supersilylgruppe R* - weder donorhaltige Monohalogenide R*2EHal•D noch halogenfreie Trielane R^{*}₃E.

Letztere Verbindungen werden jedoch nach Ersatz von SitBu₃ durch weniger Raum beanspruchende Silylgruppen zugänglich. Beispielsweise ließ sich mit dem "kleinen" SiMe₃-Rest nicht nur ein Tris(trimethylsilyl)aluminium (Me₃Si)₃Al, sondern sogar ein Tetrakis(trimethylsilyl)aluminat Al(SiMe₃)₄⁻ gewinnen [3]. Allerdings schützen derartige Reste Trielcluster-Verbindungen nicht

Schema 1. Mögliche Strukturen donorfreier und donorhaltiger Silyltrielane $(R_3Si)_n EHal_{3-n}$ (n = 1, 2, 3; E = B, Al, Ga, In, Tl; D = Hal⁻, OR₂, NR₃, SiR₃⁻ usw.)

vor ihrer – unerwünschten – Disproportionierung. So führt etwa die Enthalogenierung von $(Me_3Si)_2AlCl$ zu keinem Dialan $(Me_3Si)_2Al Al(SiMe_3)_2$, sondern zu dessen Zerfallsprodukten, Al und $(Me_3Si)_3Al$ [4].

In diesem Zusammenhang kommt der Di-*tert*butylphenylsilyl-Gruppe SiR₃ = **SitBu**₂**Ph** = **R'**, die Gegenstand nachfolgender Ausführungen ist, Bedeutung zu: Sie ist sterisch etwas weniger überladen als die Supersilylgruppe SitBu₃ und ermöglicht demzufolge auch den Zugang zu Trisilyltrielanen R'₃E, doch reicht ihre Sperrigkeit noch für eine

Κ

0932–0776/01/0700–0652 \$ 06.00 © 2001 Verlag der Zeitschrift für Naturforschung, Tübingen · www.znaturforsch.com

Metastabilisierung von Ditrielanen R'₂E-ER'₂ aus. Über Synthesen, Charakterisierung und Strukturen von Verbindungen des Typs R'_nEHal_{3-n} sei nachfolgend berichtet. Gegenstände einer weiteren Veröffentlichung werden dann Synthesen, Charakterisierung, Reaktionen und Strukturen von Ditrielanen R*₄E₂ und R'₄E₂, u. a. erzeugt durch Enthalogenierung von Trielanen (R₃Si)_nEHal_{3-n} (R₃Si = R*, R'), sein [5].

Der Austausch einer Supersilyl-Gruppe in $R_{n}^*EHal_{3-n}$ gegen die raumbeanspruchendere Ditert-butylmesitylsilyl-Gruppe SiR₃ = SitBu₂Mes = R" könnte umgekehrt bewirken, dass Dihalogenide R"EHal₂ aus sterischen Gründen weder Dimere noch Donoraddukte bilden und Monohalogenide R"₂EHal besonders leicht in Kationen R"₂E⁺ übergehen. Leider ließ sich bisher – wie nachfolgend ebenfalls ausgeführt sei – das zum Aufbau von R"_nEHal_{3-n} aus EHal₃ benötigte Alkalimetallsilanid MR" nicht erzeugen.

2. Synthesen von R'_nEHal_{3-n} (E = Triel; R' = SitBu₂Ph)

Die Synthese donorfreier und donorhaltiger Silyltrielane R'_nEHal_{3-n} erfolgt wie die der Silyltrielane R*_nEHal_{3-n} [2] im Zuge eines *Aufbaus* durch Reaktion von Alkalimetallsilaniden (hier NaR') und Trieltrihalogeniden EHal₃ oder im Zuge einer *Umwandlung* der auf diese Weise erhaltenen Verbindungen. Beide Methoden seien – zusammen mit Verfahren zur Synthese von NaR' und Versuchen zur Synthese von NaR' – kurz besprochen.

2.1. Synthese von NaR' und Syntheseversuche für NaR'' (R' = SitBu₂Ph; R'' = SitBu₂Mes)

Das zum Aufbau der weiter unten diskutierten Silyltrielane benötigte Silanid NaR' ist wie das Silanid NaR* gemäß Schema 2 durch Reaktion von tBu_2RSi (R = Ph oder tBu) in Alkanen, Benzol, Ethern mit Natrium erhältlich. Benötigtes tBu_2RSiBr wird hierbei aus dem Fluorid tBu_2SiHF durch Reaktion mit LiR und sich anschließender Bromierung der hervorgehenden Silane tBu_2RSiH in guten Ausbeuten gewonnen (bezüglich der Darstellung von tBu_2SiHF vgl. [6]). Das Silan tBu_2PhSiH entsteht auch durch Reaktion von PhSiCl₃ mit der dreifach molaren Menge LitBu in mäßiger Ausbeute [7]. Die Strukturen von

Schema 2. Synthesen sowie Strukturen von NaSitBu₃ [6] und NaSitBu₂Ph [7] (donorfrei).

NaR* und NaR' unterscheiden sich dadurch deutlich voneinander (vgl. Schema 2), dass donorfreies NaR* dimer ist mit planarem -Si-Na-Si-Na-Vierring und fünfbündigen Si-Atomen [6], wogegen donorfreies NaR' einen polymeren Bau aufweist mit XXXPh-Si-NaXXXPh-Si-NaXXX-Ketten und vierbündigen Si-Atomen [7].

Die Bromierung des gemäß Schema 2 durch Einwirkung von LiMes auf tBu_2SiHF gewonnenen Silans $tBu_2MesSiH$ liefert nicht das zur Erzeugung von NaSi tBu_2Mes benötigte Bromsilan $tBu_2MesSiBr$, sondern führt im Sinne der Gleichung $tBu_2MesSiH$ + $Br_2 \rightarrow tBu_2SiHBr$ + MesBr zu einer Abspaltung von MesBr.

2.2. Synthesen von $R'_n EHal_{3-n}$ und $R'_n EHal_{3-n} \bullet D$ durch Verbindungsaufbau

Donorhaltige Monosilyltrieldihalogenide des Typs R'EHal₂ • D (hier R'GaCl₂ • THF, R'InCl₂ • THF) entstehen im Sinne von Schema 3 durch Reaktion von Trieltrihalogeniden EHal3 mit äquimolaren Mengen NaR' in Anwesenheit des erwünschten Donors, welcher als Reaktionsmedium genutzt oder letzterem beigefügt werden kann. Setzt man die Trihalogenide EHal₃ in Abwesenheit von Donoren mit äquimolaren Mengen NaR' in Alkanen als Reaktionsmedium um, so erhält man donorfreie Monosilvldihalogenide des Typs R'EHal₂ (hier R'AlBr₂, R'GaCl₂). Dies steht im Gegensatz zur Supersilanidierung von EHal₃ in Alkanen, welche zu R^{*}₂EHal führt, da offensichtlich die intermediär entstehenden Trielane R*EHal₂ rascher als die Edukte EHal₃ mit NaR* reagieren [2]. Als Erklärung wurde angenommen [2], dass die Substitution von Hal- gegen

Schema 3. Synthesen von R'_nEHal_{3-n} (donorfrei, -haltig) durch Verbindungsaufbau und -umwandlung.

 R^{*-} in den entsprechenden Halogeniden, die in Alkanen im Sinne von (EHal₃)₂ und (R*EHal₂)₂ dimer vorliegen, auf dem Wege über Monomere verläuft, wobei die Monomerisierung letzterer Halogenide aus sterischen Gründen leichter erfolgt. Entsprechendes gilt dann wohl nicht mehr für die sterisch weniger als (R*EHal₂)₂ überladenen Dihalogenide (R'EHal₂)₂.

Setzt man Trieltrihalogenide in Alkanen mit der doppeltmolaren Menge NaR' um, so bilden sich gemäß Schema 3 Trisilyltrielane des Typs R'₃E (hier R'₃Al, R'₃Ga, R'₃In). Somit wird zwischenzeitlich entstandenes Disilyltrielhalogenid des Typs R'₂EHal rascher silanidiert als das zunächst aus EHal₃ und NaR' gebildete Monosilyltrieldihalogenid R'EHal₂. Dies lässt sich wiederum damit erklären, dass die Substitution von Hal- gegen R'auf dem Wege über monomere Trielhalogenide verläuft, wobei die sterisch überladenen Monohalogenide R'₂EHal, die anders als die Dihalogenide R'EHal₂ wohl monomer vorliegen (vgl. R*₂EHal), naturgemäß rascher als letztere Verbindungen silanidiert werden (eine Überführung von R*2EHal in R*3E ist aus sterischen Gründen nicht mehr möglich [2]). Naturgemäß führt die Reaktion von EHal₃ mit der dreifachmolaren Menge NaR' glatt zu R'₃E.

2.3. Synthesen von R'EHal₂ durch Verbindungsumwandlung

Die Bildung der erwünschten Zielverbindungen R'₂EHal ließ sich auch durch Komproportionierung von R'₃E und EHal₃ (bzw. R'₃E und R'EHal₂) bei erhöhter Temperatur nach langen Reaktionszeiten

Tab. 1. Charakterisierung donorhaltiger oder donorfreier Trielane R' $_n$ EHal $_{3-n}$ (R' = SitBu₃Ph; E = Triel). Die gewonnenen Verbindungen sind *farblos* (*n* = 1) bzw. *gelb* (*n* = 3).

Trielan	Schmp. $(^{\circ}C)^{[b]}$	NMR (C_6D_6) : *(SitBu ₂)		
[a]		1 H	¹³ C ^[c]	²⁹ Si ^[d]
R'AlBr ₂	Z	1.24	29.4/31.1	?
R' ₃ Al	179(2)	1.17	23.8/32.3	16.2
R'GaCl ₂ ●T	Z	1.25	22.2/30.4	15.9
R'GaCl ₂	Z	1.26	28.1/30.7	20.8
R' ₃ Ga	167(Z)	1.17	23.8/32.3	25.2
R'InCl₂●T	Z	1.29	23.1/30.2	?
R' ₃ In	Z	1.20	23.7/33.4	27.1

^[a] T = THF. ^[b] Z = Zersetzung. ^[c] Erste / zweite Verschiebung CMe_3/CMe_3 . ^[d] Zum Vergleich *(²⁹Si) für R*₂AlBr 25.9; R*GaCl₂•T 27.0; R*GaBr₂ 36.6, R*InCl₂•T 47.7.

nicht verifizieren. Die Reaktion äquimolarer Mengen R'₃E und EHal₃ führt nämlich im Sinne von Schema 3 ausschließlich zu R'EHal₂, wobei ein Teil des eingesetzten Trielans R'₃E unumgesetzt zurückbleibt. Somit reagieren R'₃E und EHal₃ langsamer unter Bildung von R'₂EHal als R'₂EHal und EHal₃ unter Bildung von R'EHal₂. Offensichtlich ist die Abnahme der sterischen Behinderungen der Reaktion beim Übergang von R'₃E zu R'₂EHal für die Umsatzbeschleunigung verantwortlich. Naturgemäß führt die Reaktion von EHal₃ mit der doppeltmolaren Menge R'₃E glatt zu R'EHal₂.

3. Charakterisierung von R'_nEHal_{3-n} (E = Triel; R' = SitBu₃Ph)

In Tab. 1 sind die von uns synthetisierten donorhaltigen und -freien Trielane R'_nEHal_{3-n} zusammen mit einigen *Kenndaten* der Substanzen aufgeführt. Es handelt sich um kristalline, in organischen Medien mäßig bis gut lösliche, luft- und hydrolyseempfindliche Feststoffe, die farblos (n = 1) bzw. gelb (n = 3) sind.

Ähnlich wie die ¹*H*- und ¹³*C*-*NMR*-Signale der Supersilyltrielane $R_n^*EHal_{3-n}$ ($R^* = SitBu_3$; vgl. [2]) liegen die NMR-Signale der analog zusammengesetzten Silyltrielane $R_n^*EHal_{3-n}$ (gleiches *n*; $R' = SitBu_2Ph$; vgl. Tab. 1) in vergleichsweise engen Verschiebungsbereichen, während die ²⁹Si-*NMR*-Signale für beide Verbindungsreihen in Richtung E = Al, Ga, In bei zunehmend tieferem Feld liegen sofern man Verbindungen analoger Zusammensetzung vergleicht. Auch der Übergang $R_n'EHal_{3-n}$ $\rightarrow R_n^*EHal_{3-n}$ analog zusammengesetzer donor-

Abb. 1. Struktur des Moleküls R'₃Al (R' = SitBu₂Ph; Lokalsymmetrie C₃) im Kristall und verwendete Atomnumerierung (ORTEP; thermische Schwingungsellipsoide 25%; H-Atome unberücksichtigt). Bindungslängen [Å] und -winkel [°] des Moleküls R'₃Al und des analog gebauten Moleküls R'₃Ga. **R'₃Al**: Al1-Si1 2.592(5), Si-C (Mittelwert) 1.93. – Si1-Al1-Si1 119.97 (Winkelsumme an Al1 359.9), C-Si-C (Mittelwert) 108.5. – **R'₃Ga**: Gal-Si1 2.584(5), Si-C (Mittelwert) 194.2. – Si1A-Gal-Si1 119.98 (Winkelsumme an Gal 359.9), C-Si-C (Mittelwert) 108.6.

haltiger oder -freier Trielane (gleiches *n*) bedingt, wie der Übergang $R'_n EHal_2 \bullet D \to R'EHal_2 \to R'_3 E$ (E = Ga), eine Tieffeldverschiebung der ²⁹Si-NMR-Signale (Tab. 1).

4. Kristallstrukturen von R'₃E (E = Al, Ga; R' = SitBu₂Ph)

Der Bau der Moleküle R'₃Al und R'₃Ga (jeweils gelbe Würfel aus Pentan, trigonal, $P\bar{3}$) im Kristall gibt die Abb. 1 wieder.

Hiernach sind die Si₃E-Gruppen in den monomeren Verbindungen (tBu_2PhSi)₃E (E = Al, Ga) planar gebaut (Winkelsumme an E 359.9°), wobei die Si-Atome die Ecken eines E-zentrierten gleichseitigen Dreiecks besetzen. Alle drei Phenylgruppen liegen hierbei auf einer Seite der betreffenden Ebene und sind schaufelradartig angeordnet. Die *tBu*-Gruppen der chiralen Verbindungen liegen jeweils hälftig innerhalb bzw. auf der anderen Seite der Si₃E-Ebene.

Die Si-E-Abstände sind mit 2.592 (Al) bzw. 2.584 Å (Ga) deutlich größer als die aus der Summe der Kovalenzradien von Si und E [8] errechenbaren Abstände von 1.17 + 1.25 = 2.42 Å (Al) bzw. 1.17 + 1.26 = 2.43 Å (Ga). Sie übertreffen sogar die Si-E-Abstände in R^*_2ECI mit 2.525 (Al) bzw. 2.485 Å (Ga) [2], in welchen anstelle von SitBu₂Ph die raumerfüllenderen Reste SitBu₃ vorliegen. Doch enthalten die Trielane R'₃E drei dieser doch noch recht sperrigen Substituenten R'. Der Sachverhalt, dass sich die Si-E-Bindungslängen in Richtung R'₃Al \rightarrow R'₃Ga verringern, obwohl die Atomradien in Richtung Al \rightarrow Ga zunehmen sollen [8], wird auch im Falle anderer Silyltriel-Verbindungen beobachtet [2, 5]. Möglicherweise nimmt also der Atomradius in Richtung Al \rightarrow Ga aus den in Ref. [2] genannten Gründen nicht zu, sondern etwas ab. Die Si-C-Abstände und C-Si-C-Winkel liegen mit durchschnittlich 1.94 Å und 109° noch im normalen Bereich (1.94 - 1.95 Å, 110 - 112° [9]).

5. Experimenteller Teil

Alle Untersuchungen wurden unter strengem Ausschluß von Luft und Feuchtigkeit durchgeführt. OV/HV =Olpumpen-/Hochvakuum. Zur Verfügung standen: LiPh,Br₂, Na, AlBr₃, GaCl₃, InCl₃. Nach Literaturvorschriftenwurden synthetisiert:*t*Bu₂SiHF [6], LiMes in Et₂O [10].Die Lösungsmittel (Pentan, Heptan, Cyclohexan, Diethylether, Tetrahydrofuran, Benzol) wurden vor Gebrauchgetrocknet.

Für *NMR-Spektren* dienten Multikerninstrumente Jeol GX-270 (¹H / ¹³C / ²⁹Si: 270.17 / 67.94 / 53.67 MHz) und Jeol EX-400 (¹H / ¹³C / ²⁹Si: 399.78 / 100.41 / 79.21 MHz). Die ²⁹Si-NMR-Spektren wurden mit Hilfe eines INEPT- bzw. DEPT-Pulsprogramms mit optimierten Parametern für die jeweiligen Substituenten aufgenommen. – Für *Massenspektren* standen Geräte Varian CH7 und MStation JMS 700 der Firma Jeol zur Verfügung.

5.1. Synthese von NaSitBu₂Ph; Syntheseversuch für NaSitBu₂Mes

a) Di-tert-butylphenylsilan: Zu 6.96 g (42.9 mmol) tBu₂SiHF in 20 ml Heptan (0 °C) werden 43.9 mmol LiPh in 18 ml Cyclohexan/7 ml Diethylether getropft, wobei sich ein farbloser Niederschlag (NaF) bildet. Die Destillation liefert bei 50 °C/ÖV 7.3 g (33.1 mmol; 77%) farbloses, flüssiges tBu₂PhSiH. – ¹H-NMR (C₆D₆, iTMS): δ = 1.063 (s; 2 tBu), 3.510 (s; SiH), 7.181 / 7.587 / 7.845 (m/m/m; *p-/m-/o*-H von Ph). – ¹³C{¹H}-NMR (C₆D₆, *i*TMS): δ = 19.1 / 29.2 (2CMe₃ / 2CMe₃), 128.0 / 129.3 / 135.5 / 136.1 (*m-/p-/o-/i*-C von Ph). – ²⁹Si{¹H}-NMR (C₆D₆, eTMS): δ = 13.4 (SitBu₂).

b) Di-tert-butylphenyl-chlorsilan und -bromsilan: Zu 0.076 g (0.315 mmol) tBu_2PhSiH in 5 ml Pentan (0 °C) bzw. 7.3 g (33.1 mmol) tBu_2PhSiH in 10 ml Pentan (0 °C) werden in erstem Falle 0.4 mmol Cl₂ in 2 ml CCl₄, in zweitem Falle 34.0 mmol Br₂ getropft. Die Destillation

liefert bei 50 °C/ÖV in erstem Falle 9.4 g (0.29 mmol; 93%) farbloses, flüssiges $tBu_2PhSiCl$, in zweitem Falle 9.6 g (0.32 mmol; 95%) farbloses, flüssiges $tBu_2PhSiBr$. – $tBu_2PhSiCl$: ¹H-NMR (C₆D₆, iTMS): δ = 1.079 (s; 2tBu), 7.159 / 7.780 / 7.845 (m/m/m; p-m-/o-H von Ph). – ¹³C{¹H}-NMR (C₆D₆, iTMS): δ = 22.2 / 28.1 (2CM e_3) / 2CM e_3), 127.9 / 129.9 / 133.0 / 135.2 (m-/p-/o-/i-C von Ph).- - ²⁹Si{¹H}-NMR (C₆D₆, eTMS): δ = 27.1 (SitBu₂). – $tBu_2PhSiBr$: ¹H-NMR (C₆D₆, iTMS): δ = 1.103 (s; 2tBu), 7.156 / 7.783 / 7.845 (m/m/m; p-/m-/o-H von Ph). – ¹³C{¹H}-NMR (C₆D₆, iTMS): δ = 22.6 / 28.5 (2CM e_3 / 2CM e_3), 127.9 / 127.8 / 135.2 / 135.7 (m-/p-/o-/i-C von Ph). – ²⁹Si{¹H}-NMR (C₆D₆, eTMS): δ = 33.7 (SitBu₂).

c) Natrium-di-tert-butylphenylsilanid: Man erwärmt 7.18 g (24.0 mmol) tBu₂PhSiBr und 10 g (435 mmol) Na in 100 ml Heptan 24 h auf 100 °C, kühlt die Lösung auf Raumtemperatur ab, engt sie auf 50 ml ein, filtriert alle unlöslichen Anteile ab und löst letztere in 80 ml Benzol. Nach Abrennen unlöslicher Anteile (Na, NaBr) und Abkondensieren aller flüchtigen Anteile vom Filtrat verbleiben 4.5 g (18.6 mmol; 77%) gelbes, kristallines, pyrophores, hydrolyseempfindliches NaSitBu₂Ph. – ¹H-NMR (C₆D₆, *i*TMS): δ = 1.243 (s; 2tBu), 7.181 / 7.772 / 7.845 (m/m/m; *p-/m-/o*-H von Ph). – ¹³C{¹H}-NMR (C₆D₆, *i*TMS): δ = 21.90 / 32.61 (2CMe₃ / 2CMe₃), 127.8 / 128.1 / 137.7 / 154.5 (*m-/p-/o-/i*-C von Ph). – ²⁹Si{¹H}-NMR (C₆D₆, eTMS): δ = 26.8 (SitBu₂).

d) Di-tert-butylmesitylsilan; Reaktion mit Brom: Nach 72stündigem Umsatz von 7.95 g (39.9 mmol) MesBr und 0.277 g (39.9 mmol) Li in 4.0 ml Et₂O kondensiert man alle im ÖV flüchtigen Anteile ab, löst den Rückstand in 40 m Benzol, gibt tropfweise 6.43 g (39.6 mmol) tBu₂SiHF zur Lösung und hält die Reaktionslösung 12 h unter Rückfluß. Die Destillation liefert bei °C/ÖV 9.53 g (39.3 mmol; 91%) farbloses, flüssiges tBu₂MesSiH. – ¹H-NMR (C₆D₆, *i*TMS): $\delta = 1.124$ (s; 2*t*Bu), 2.543 / 2.389/2.113 (s/s/s; Me/Me/Me von Mes), 4.480 (s; SiH), 6.787 / 6.747 (s; CH/CH von Mes). $- {}^{13}C{}^{1}H$ -NMR $(C_6D_6, iTMS)$: $\delta = 20.64 / 30.51 (2CMe_3 / 2CMe_3), 21.10$ / 23.79 / 26.64 (Me/Me/Me von Mes), 128.7 / 129.7 / 130.5 / 138.5 / 143.3 / 145.7 (C_6H_2). – ²⁹Si{¹H}-NMR $(C_6D_6, eTMS)$: $\delta = 6.1$ (SitBu₂). – Anmerkung: Zu 2.73 g (10.4 mmol) tBu₂MesSiH in 20 ml Pentan (-5 °C) werden 1.66 g (10.4 mmol) Br₂ getropft. Nach Erwärmen auf R.T. enthält die Lösung - laut NMR - nur MesBr und *t*Bu₂SiHBr (vgl. 5.1b).

5.2. Synthesen und Reaktionen von $R'_n EHal_{3-n}$ (donorhaltig, donorfrei)

a) Di-tert-butylphenylaluminiumdibromid: Zu einer auf -78 °C gekühlten Lösung von 0.115 g (0.430 mmol) AlBr₃ in 10 ml Heptan werden 0.104 g (0.430 mmol) NaSitBu₂Ph in 10 ml Heptan getropft. Nach Erwärmen auf R. T. enthält die farblose Lösung – laut NMR – ausschließlich $tBu_2PhSiAlBr_2$. Nach Abkondensieren aller im ÖV flüchtigen Anteile, Lösen des Rückstands in 20 ml Pentan und Abfiltrieren unlöslicher Anteile erhält man nach Abkondensieren des Lösungsmittels 0.102 g (0.323 mmol; 75%) R'AlBr_ als farblosen Feststoff. – ¹H-NMR (C₆D₆, *i*TMS): $\delta = 1.244$ (s; 2tBu), 7.589/7.231 (m/m; *o-,p-/m*-CH von Ph). – ¹³C{¹H}-NMR (C₆D₆, *i*TMS): $\delta = 29.40/31.10$ (2CMe₃/2CMe₃), 127.9/128.5 / 135.5/138.7 (*m-/p-/o-/i*-C von Ph). – ²⁹Si-NMR: Nicht beobachtbar. – Anmerkung: R'AlBr₂ entsteht auch aus R'₃Al in Alkanen mit äquimolaren bzw. doppeltmolaren Mengen AlBr₃. In ersterem Falle bleibt unumgesetztes R'₃Al zurück. Die Bildung von R'₂AlBr wird nicht beobachtet.

b) Tris(di-tert-butylphenylsilyl)alan: Zu einer auf -50 °C gekühlten Lösung von 0.144 g (0.540 mmol) AlBr₃ in 10 ml Heptan wird 0.393 g (1.62 mmol) NaSitBu₂Ph in 20 ml Heptan getropft. Nach Erwärmen auf R.T. enthält die gelbe Lösung - laut NMR - ausschließlich R'₃Al. Nach Abkondensieren aller im ÖV flüchtigen Anteile, Lösen des Rückstands in 30 ml Pentan und Abfiltrieren unlöslicher Anteile (NaBr) kristallisieren bei -23 °C in Tagen 0.278 g (0.405 mmol; 75%) R'₃Al in Form gelber, luft- und hydrolyseempfindlicher Würfel aus, die sich ab 179 °C zersetzen. – ¹H-NMR $(C_6D_6, iTMS): \delta = 1.167 (s; 6tBu), 7.231 / 7.432 / 8.148$ $(m/m/m; p-/m-/o-CH \text{ von 3Ph}) - {}^{13}C{}^{1}H{}-NMR (C_6D_6,$ *i*TMS): $\delta = 23.78 / 32.25 (6CMe_3 / 6CMe_3), 126.9 /$ $128.8 / 136.5 / 137.3 (m-/p-/o-/i-C \text{ von 3Ph}). - {}^{29}\text{Si}{}^{1}\text{H}$ NMR (C₆D₆, eTMS): $\delta = 16.2$ (3SitBu₂). – Röntgenstrukturanalyse: Vgl. Abb. 1. C₄₂H₆₉AlSi₃ (795.3): ber. C 73.62, H 10.14; gef. C 72.12, H 10.03. - Anmerkung: Nach Erwärmen einer auf -78 °C gekühlten Lösung von 0.168 g (0.629 mmol) AlBr₃ und 0.305 g (1.26 mmol) NaSitBu₂Ph in 20 ml Heptan auf R. T. bilden sich - laut NMR - nur R'AlBr₂ (vgl. 5.4c) aber kein R'₂AlBr. Es verbleibt R'₃Al unumgesetzt.

c) Di-tert-butylphenylgalliumdichlorid-tetrahydrofuran (1/1): Zu einer auf -78 °C gekühlten Lösung von 0.242 g (1.38 mmol) GaCl₃ in 10 ml Pentan wird 0.336 g (1.38 mmol) NaSitBu₂Ph in 10 ml THF getropft. Nach Erwärmen auf R. T. enthält die farblose Lösung – laut NMR – ausschließlich tBu₂SiGaCl₂•THF. Nach Abkondensieren aller im ÖV flüchtigen Anteile, Lösen des Rückstands in 20 ml Pentan und Abfiltrieren unlöslicher Anteile erhält man nach Einengen auf 10 ml bei -23 °C im Laufe einer Woche 1.236 g (2.31 mmol; 87%) tBu₂PhSiGaCl₂•THF als farblosen, luft- und hydrolyseempfindlichen Feststoff. – ¹H-NMR (C₆D₆, *i*TMS): δ = 1.252 (s; 2 tBu), 7.195 / 7.987 (m/m; *o-,p-/m*-CH von Ph), 1.053 / 3.671 m/m; 2 CH₂ / CH₂O). – ¹³C{¹H}-NMR (C₆D₆, *i*TMS): δ = 22.23 / 30.38 (2CMe₃ / 2CMe₃), 25.15 / 69.95 (2 CH₂ / CH₂O), 128.1 / 129.5 / 135.9 / 136.9 (*m-/p-/o-/i*-C von Ph). $-{}^{29}$ Si{¹H}-NMR (C₆D₆, eTMS): δ = 15.92 (Si*t*Bu₂). - C₁₈H₃₁GaCl₂OSi (432.2): ber. C 50.03, H 7.23: gef. C 49.63, H 7.17.

d) Di-tert-butylphenylgalliumdichlorid: Zu einer auf -78 °C gekühlten Lösung von 0.132 g (0.545 mmol) GaCl₃ in 10 ml Heptan werden 0.096 g (0.545 mmol) NaSitBu₂Ph in 10 ml Heptan getropft. Nach Erwärmen auf R.T. enthält die farblose Lösung - laut NMR ausschließlich tBu2PhSiGaCl2. Nach Abkondensieren aller im ÖV flüchtigen Anteile, Lösen des Rückstands in 20 ml Pentan und Abfiltrieren unlöslicher Anteile erhält man nach Abkondensieren des Lösungsmittels 0.163 g (0.452 mmol; 83%) R'GaCl₂ als farblosen, luftund hydrolyseempfindlichen Feststoff. $-{}^{1}$ H-NMR (C₆D₆, *i*TMS): $\delta = 1.256$ (s; 2*t*Bu), 7.184 / 7.590 (m/m; *o*-,*p*-/*m*-CH von Ph). $-{}^{13}C{}^{1}H$ -NMR (C₆D₆, *i*TMS): $\delta = 28.12$ / 30.72 (2CMe₃ / 2CMe₃), 127.9 / 129.2 / 136.1 / 137.4 (m-/p-/o-/i-C von Ph). $-\frac{29}{5i}\{^{1}H\}-NMR (C_{6}D_{6}, eTMS)$: $\delta =$ 20.83 (SitBu₂). – Anmerkung: R'GaCl₂ entsteht auch aus R'₃Ga in Alkanen mit der äquimolaren bzw. doppeltmolaren Menge GaCl₃. In ersterem Falle bleibt unumgesetztes R'₃Ga zurück. Die Bildung von R'₂GaCl wird nicht beobachtet.

e) Tris(di-tert-butylphenylsilyl)gallan: Zu einer auf -78 °C gekühlten Lösung von 0.116 g (0.658 mmol) GaCl₃ in 5 ml THF werden 0.479 g (1.98 mmol) NaSitBu₂Ph in 15 ml Pentan / 3 ml THF getropft. Nach Erwärmen auf R.T. enthält die gelbe Lösung - laut NMR - ausschließlich R'3Ga. Nach Abkondensieren aller im ÖV flüchtigen Anteile, Lösen des Rückstands in 30 ml Pentan und Abfiltrieren unlöslicher Anteile (NaCl) kristallisieren bei –23 °C in Tagen 0.412 g (0.566 mmol; 86%) R'₃Ga in Form gelber, luft- und hydrolyseempfindlicher Würfel aus, die sich ab 167 °C zersetzen. – ¹H-NMR (C₆D₆, *i*TMS): $\delta = 1.170$ (s; 6*t*Bu), 7.197 / 7.408 / 8.018 (m/m/m; p-/m-/o-CH von 3Ph). -¹³C{¹H}-NMR (C₆D₆, *i*TMS): δ = 23.78 / 32.25 (6*C*Me₃) / 6CMe3), 126.9 / 129.4 / 136.3 / 136.9 (m-/p-/o-/i-C von 3Ph). $-{}^{29}$ Si{ 1 H}-NMR (C₆D₆, eTMS): $\delta = 25.15$ (3SitBu₂). - Röntgenstrukturanalyse: Vgl. Abb. 1. - Anmerkungen: 1) Nach Erwärmen einer auf -78 °C gekühlten Lösung von 0.116 g (0.658 mmol) GaCl₃ und 0.320 g (1.32 mmol) NaSitBu₂Ph in 20 ml Pentan / 3 ml THF auf R. T. bilden sich – laut NMR – nur R'GaCl₂ (vgl. 5.4d) und R'₃Ga, aber kein R'₂GaCl. 2) R'₃Ga und GaCl₃ im Molverhältnis 2:1 bzw. 1:1 reagieren in THF bei R.T. - laut NMR - zu R'GaCl₂ (vgl. 5.4 d). In letzterem Falle bleibt unumgesetztes R'₃Ga zurück. Die Bildung von R'₂GaCl wird nicht beobachtet. 3) R'₃Ga und R'GaCl₂ im Molverhältnis 1:1 reagieren in Heptan bei 100 °C - laut NMR - nicht miteinander. 4) $R'_{3}Ga$ und Cl_{2} im Molverhältnis 2:1 reagieren in CCl₄ bei R.T. - laut

Tab. 2. Ausgewählte Parameter zu den Röntgenstrukturanalysen von $R'_{3}Al$ und $R'_{3}Ga$ ($R' = SitBu_{2}Ph$).

	R' ₃ Al	R' ₃ Ga
Formel	C42H69AlSi3	C42H69GaSi3
$M_{\rm r}$	685.25	727.99
$T[\mathbf{K}]$	193	190
$Mo-K_{\alpha}$ [Å]	0.71073	0.71073
System	hexagonal	trigonal
Raumgr.	P3	P3
a [Å]	12.3378(6)	12.406(2)
<i>b</i> [Å]	12.3378(6)	12.406(2)
<i>c</i> [Å]	16.0876	16.200(3)
γ [°]	120.00	120.00
$V[A^3]$	2120.8(2)	2159.3(6)
Ζ	6	2
ρ [g/cm ³]	1.073	1.120
$\mu [{\rm mm}^{-1}]$	0.159	0.746
F(000)	752	788
2θ [°]	2.54 - 55.36	6.3 - 51.58
Bereiche	$-16 \le h \le 16;$	$-15 \le h \le 15;$
	$-9 \le k \le 9;$	$-15 \le k \le 8;$
	$-20 \le l \le 19$	$-19 \le l \le 19$
Reflexe, gesamt	11696	9414
— unabh.	2993	2754
$R_{\rm int}$	0.0423	0.1005
$x/y^{[a]}$	1/1	1/1
$R1^{[b]}$	0.0371	0.0428
$wR2^{[b]}$	0.0899	0.1091
GOOF	1.038	0.842
Restel. [e/Å ³]	0.229/-0.168	0.720/-0.411

^[a] Wichtungsfaktor $w^{-1} = \sigma^2 F_0^2 + (xP)^2 + yP$ mit $P = (F_0^2 + 2F_c^2)/3$. ^[b] $F > 4\sigma(F)$.

NMR – zu R * Cl und GaCl₃. Es verbleibt unumgesetztes R'₃Ga.

f) Di-tert-butylphenylindiumdichlorid-Tetrahydrofuran (1/1): Zu einer auf -78 °C gekühlten Lösung von 0.259 g (1.171 mmol) InCl₃ in 15 ml Pentan / 5 ml THF wird eine Lösung von 0.284 g (1.171 mmol) NaSitBu₂Ph in 10 ml THF / 5 ml Pentan getropft, wobei man eine hellgelbe Reaktionslösung erhält, die beim langsamen Erwärmen auf R.T. farblos wird. Eine nach Austausch des Lösungsmittels gegen C₆D₆ gemessene Probe zeigt die quantitative Bildung von R'InCl₂•THF. Nach Abkondensieren aller im ÖV flüchtigen Anteile, Aufnahme des Rückstands in 20 ml Pentan und Abfiltrieren unlöslicher Bestandteile (NaCl) erhält man nach Entfernen des Lösungsmittels 0.408 g (0.855 mmol; 73%) farbloses, luft- und hydrolyseempfindliches R'InCl₂•THF. – ¹H-NMR (C_6D_6 , *i*TMS): $\delta = 1.294$ (s; 2*t*Bu), 7.179 / 7.554 /7.927 (m/m/m; *p-/m-/o*-CH von 1Ph). $-{}^{13}C{}^{1}H$ -NMR $(C_6D_6, iTMS): \delta = 23.06 / 30.19 (2CMe_3 / 2CMe_3), 25.42$ / 68.72 (2CH₂ / CH₂O), 128.8 / 129.7 / 136.7 / 137.4 (m-/p-/o-/i-C von 1Ph). – ²⁹Si-NMR: Nicht beobachtbar.

g) Tris(di-tert-butylphenylsilyl)indan: Zu 0.051 g (0.210 mmol) InCl₃ und 0.153 g (0.630 mmol) NaSitBu₂Ph werden bei –196 °C 8 ml Pentan kondensiert. Nach dem Erwärmen auf R. T. enthält die gelbe Lösung – laut NMR – hauptsächlich R'₃In. Nach Abkondensieren aller im ÖV flüchtigen Anteile, Lösen des Rückstands in 10 ml Pentan und Abfiltrieren unlöslicher Anteile (NaCl) erhält man nach Abkondensieren des Lösungsmittels 0.123 g (0.159 mmol; 76%) luft- und hydrolyseempfindliches R'₃In. – ¹H-NMR (C₆D₆, *i*TMS): δ = 1.202 (s; 6*t*Bu), 7.220 / 7.543 / 7.738 (m/m/m; *p*-/*m*-/*o*-CH von 3Ph). – ¹³C{¹H}-NMR (C₆D₆, *i*TMS): δ = 23.69 / 33.35 (6CMe₃ / 6CMe₃), 127.0 / 128.7 / 136.4 / 138.3 (*m*-/*p*-/*o*-/*i*-C von 3Ph). – ²⁹Si{¹H}-NMR (C₆D₆, eTMS): δ = 27.10 (3SitBu₂).

5.3. Kristallstrukturen von R'₃Al und R'₃Ga

Für die Strukturbestimmung der Verbindung R'₃Al wurde ein Siemens SMART mit CCD-Flächenzähler und für die von R'₃Ga ein STOE-IPDS mit Flächenzähler verwendet. Strukturlösung mit direkten Methoden (SHELXS-97) und Verfeinerung nach der Methode der kleinsten Fehlerquadrate an allen K^2 (SHELXL-97). Die Lagen der Nichtwasserstoffatome sind in anisotroper Beschreibung verfeinert, H-Atome in berechneten Lagen und mit dem riding model in die Verfeinerung einbezogen. Abb. 1 gibt die Verbindungsstrukturen, Tab. 2 kristallographische Details wieder.

Die kristallographischen Daten (ohne Strukturfaktoren) der Verbindungen wurden als "supplementary publication" No. CCDC-166011 (R'₃Al) und CCDC-163351 (R'₃Ga) beim Cambridge Crystallographic Data Centre hinterlegt. Kopien der Daten können kostenlos bei folgender Adresse in Großbritannien angefordert werden: CCDC, 12 Union Road, Cambridge CB2 1EZ (Fax: (+44)1223-336-033; E-mail: deposit@ccdc.cam.ac.uk).

Dank

Wir danken der Deutschen Forschungsgemeinschaft und dem Fonds der Chemischen Industrie für die Unterstützung der Arbeit mit Personal- und Sachmitteln.

- 149. Mitteilung über Verbindungen des Siliciums. Zugleich 16. Mitteilung über Silylverbindungen des Bors und seiner Homologen. 148. (15.) Mitteilung: [2].
- [2] N. Wiberg, K. Amelunxen, T. Blank, H.-W. Lerner, K. Polborn, H. Nöth, R. Littger, M. Rackl, M. Schmidt-Amelunxen, H. Schwenk-Kircher, M. Warchold, Z. Naturforsch. 56b, 634 (2001).
- [3] L. Rösch, Angew. Chem. 89, 497 (1977); Angew. Chem. Int. Ed. Engl. 17, 480 (1977); L. Rösch, G. Altnan, C. Krüger, Y.-H Tsay, Z. Naturforsch. 38b, 34 (1983) und zit. Lit.
- [4] W. Uhl, Angew. Chem. 105, 1449 (1993); Angew. Chem. Int. Ed. Engl. 32, 1386 (1993).

- [5] N. Wiberg, T. Blank, K. Amelunxen, H. Nöth, H. Schnöckel, E. Baum, A. Purath, D. Fenske, Eur. J. Inorg. Chem., im Druck (2001).
- [6] N. Wiberg, K. Amelunxen, H.-W. Lerner, H. Schuster, H. Nöth, I. Krossing, M. Schmidt-Amelunxen, T. Seifert, J. Organomet. Chem. 542, 1 (1997).
- [7] H.-W. Lerner, S. Scholz, M. Bolte, Z. Anorg. Allg. Chem. 627, im Druck (2001).
- [8] Holleman-Wiberg, Lehrbuch der Anorganischen Chemie, DeGruyter, Berlin (1995).
- [9] N. Wiberg, Coord. Chem. Rev. 163, 217 (1997).
- [10] N. Wiberg, B. Neruda, Chem. Ber. 99, 740 (1966).