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Many complexes and coordination polymers with unique
properties have been constructed with the cyanide ion.[1]

However, analogous chemistry with the heavier phosphorus
congener of cyanide has not been developed. We reported the
synthesis and X-ray crystallographic characterization of
a complex with a terminal cyaphide ligand, [RuH(dppe)2-
(C�P)] (2 ; dppe= bis-1,2-diphenylphosphinoethane).[2,3]

Herein we present experimental and computational results
which suggest a possible mechanism for the formation of 2.

When [RuH(dppe)2(P�CSiPh3)]+ (1) was treated with
1.2 equivalents of NaOPh in dry [D8]THF (Scheme 1) and the

subsequent reaction was monitored by 31P{1H} NMR spec-
troscopy, a new quintet at d = 309.5 (JPP= 27 Hz) ppm and a
doublet at d = 62.7 (JPP= 27 Hz) ppm were seen for inter-
mediate X. Over time, this intermediate species disappeared
and broader resonances at d = 164.8 and 65.3 ppm appeared
for product 2. When two equivalents of NaOPh (relative to 1)
were used, the rate of reaction to form the cyaphide complex
2 was accelerated. A clue to the nature of X was obtained
serendipitously when the reaction of NaOPh and 1 was
performed in wet acetonitrile. From this reaction a new
product was detected in the 31P NMR spectrum (d = 332.0
(qnt, JPP= 28 Hz), 67.7 (d, JPP= 28 Hz) ppm). Further inves-
tigations into this crystalline material by X-ray diffraction
revealed the unique l5s3-phosphaketenylruthenium complex
3 (Figure 1).[4]

The coordination sphere around phosphorus in this l5s3-
phosphaketenyl complex is trigonal-planar (�P= 3608). Both
the P1�O1 (1.509(2) =) and P1�C1 (1.663(3) =) bonds are
short and typical for low-coordinate s3-type structures, R�P(=
X)2 (X=CR2, NR, O, S).

[5] In analogy with complexes

Scheme 1. Synthesis of phosphaoximato complex 3.

Figure 1. Molecular structure of 3. One acetonitrile molecule in the
crystal lattice and hydrogen atoms (except that bonded to Ru) are
omitted for clarity. Thermal ellipsoids are set at 30% probability.
Selected bond lengths [)] and angles [8]: O1-P1 1.509(2), P1-C1
1.663(3), C1-Si1 1.823(3), Ru1-P1 2.358(1), Ru1-P2 2.351(1), Ru1-P3
2.336(1), Ru1-P4 2.340(1), Ru1-P5 2.350(1); O1-P-C1 113.5(1),
Ru1-P1-O1 122.7(1), Ru1-P1-C1 123.8(1), P1-C1-Si1 127.4(2),
P1-Ru1-P2 93.9(1), P1-Ru1-P3 89.0(1), P1-Ru1-P4 97.5(1), P1-Ru1-P5
96.8(1), P2-Ru1-P3 81.3(1), P3-Ru1-P4 97.2(1), P4-Ru1-P5 83.5(1), P5-
Ru1-P2 96.8(1).
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containing oximate, [R2C=N�O]� , as ligand, 3
can also be viewed as a k1-P-phosphaoximato
complex. While oximato complexes are numer-
ous, only one other report of a ruthenium
phosphaoximato complex exists.[6, 7] Curiously,
this species, containing the k2-P,C-[P(=O)CtBu-
(C=O)]2� ion, has a markedly low-frequency
resonance in the 31P NMR spectrum (d =

47.0 ppm) in comparison to 3.
Hypothesizing that in the presence of residual

water and phenoxide, hydroxide ions are formed
that then attack at phosphorus to irreversibly
generate 3, we treated 1 with excess LiOH in
THF. Indeed, quantitative formation of 3 was
obtained through this more direct pathway. A P-
metalated phosphoniocarbene I, R2P-C-R’,

[8] is a
likely intermediate in this reaction which con-
verts by a 1,3-H shift into the final product 3
(Scheme 1). DFT calculations[9] show that ther-
modynamically the rearrangement of I to 3 is
strongly favored (DHr=�33.9 kcalmol�1).

The results discussed above serve as a starting
point for DFT calculations aimed at understand-
ing the mechanism leading to the formation of
cyaphide complex 2.[9] We used a simplified
model where each 1,2-diphenylphosphinoethane
(dppe) ligand was replaced by two PH3 mole-
cules, SiPh3 by a SiH3 group, and phenoxide by
methoxide. Based on the experimental results
that suggested hydroxide attack at phosphorus,
we hypothesized that the elimination of
Ph3SiOPh from 1 might likewise occur by initial
phenoxide attack at phosphorus. Therefore, our
computations started with A as a model for
intermediate I which is set at 0.0 kcalmol�1 in the
relative energy diagram shown in Figure 2A. This
P-metalated phosphinocarbene A rearranges via
TS1with a modest barrier (10.2 kcalmol�1) to the
C-metalated phosphaalkene B, which is 4.1 kcal
mol�1 more stable than A. Calculated 31P-NMR-
spectroscopic shifts of A and B[10] allow us to
decide which of these two isomers corresponds to the
experimentally detected intermediate X (Scheme 1). While
A has a d(31P)calcd of d = 97 ppm versus H3PO4, which is typical
for phosphinocarbenes,[8] the d(31P)calcd of B is d = 334 ppm,
which is in reasonably good agreement with the experimen-
tally detected resonance at d = 309.5 ppm.[11] Consequently
we propose that X has a structure similar to that of isomer B,
but with [Ru]= [Ru(dppe)2] and OPh and SiPh3 instead of
OMe and SiH3, respectively.

We then inspected the intramolecular elimination of the
silylether MeOSiH3 from B. The first intermediate of this
pathway is the h2-bonded phosphaalkyne silicate complex C
which is obtained via transition state TS2. The slightly
exothermic dissociation of MeOSiH3 from C (DHr (C!D)=

�1.5 kcalmol�1), leads to the h2-bonded cyaphide complex D
which rearranges via a small barrier (TS3) to the end-on
bonded cyaphide complexE in themost exothermic step (DHr

(D!E)=�19.5 kcalmol�1). Note that the overall reaction

B!E is almost thermoneutral (DHr (B!E)= 1.1 kcalmol�1),
which would explain the rather long reaction time (ca. 14 h)
for complete conversion of 1 into 2. However, the high barrier
of 38.1 kcalmol�1 calculated for the rate-limiting step via
transition state TS2 makes the intramolecular elimination of
MeOSiH3 very unlikely.

A more direct route to cyaphide complex E is simply
nucleophilic attack at silicon by methoxide followed by
MeOSiH3 elimination (Figure 2B). This alternative mecha-
nism requires that the ion pair and intermediatesA and B are
in equilibrium with one another and that only the ion pair,
and not intermediates A and B, is on the pathway leading to
E. Calculations put the pentacoordinate silicon intermediate
F, with a linear O�Si�C arrangement, 26.1 kcalmol�1 higher
in energy than A. Elimination of MeOSiH3 leads to the h2-
bonded complex D via the phosphorus-coordinated cyaphide
complexG. This isocyaphide complexG is actually calculated
to be a transition state only 4.8 kcalmol�1 higher in energy

Figure 2. Calculated reaction paths (DFT) for the interaction of the silylphosphaalkyne
complex [RuH(PH3)4(P�C-SiH3)]

+ with methoxide, MeO� to give E + H3SiOMe
overall. A) nucleophilic attack at phosphorus; B) nucleophilic attack at silicon.
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than F. Note that attempts to find a less symmetric pathway
for the attack of methoxide on the silicon atom in [RuH-
(PH3)4(P�C-SiH3)]

+ directly led to the silicate complex C,
implying that the actual barrier for the F!D conversion is
probably much lower than 26.1 kcalmol�1. An interesting
feature is the large energy difference of 33.9 kcalmol�1

between the cyaphide complex E and isocyaphide transi-
tion-state complexG, which can be understood in terms of the
Ru–P versus Ru–C s- and p-bonding interactions. The Ru�P
s bond inG (49.9 kcalmol�1) is weaker than the Ru�C s bond
in E (DEs = 62.1 kcalmol�1), as a consequence of the larger
energy difference between the accepting metal d-orbital and
the donating lone pair on phosphorus (�3.9 eV) compared to
carbon (0.6 eV). The Ru�P p bond in G (DEp = 16.1 kcal
mol�1) is reduced compared to the Ru�C p bond of E (DEp =

23.6 kcalmol�1) as there is less favorable overlap. As a result,
the phosphorus-coordinated isocyaphide complex G is even
higher in energy than the h2-bonded complexD, and thusG is
the transition state for the rotation of the C�P� moiety.

The investigations presented herein are an example of an
observed intermediate not being on the pathway leading to
product formation. The observance of intermediate Xmerely
reflects the kinetic preference of phenolate addition to
phosphorus.[12] Calculations predict a transition state that is
much too high in energy from intermediateB for path A to be
a reasonable mechanism leading to cyaphide complex 2.
Instead, direct attack of phenolate at silicon is proposed.
While kinetically less favorable than the addition of pheno-
late to phosphorus, the nucleophilic substitution reaction at
silicon is the product-forming step. Two important properties
associated with phenolate as the nucleophile in the reaction
with 1 are notable. First, the lack of a-hydrogen means
rearrangement to a phosphaoximato complex is not possible
if phenolate attacks at phosphorus. Second, despite being
kinetically more favorable, the initial attack at the phospho-
rus center of P�C-SiPh3 must be reversible. While we could
not compute the proposed ion-pair intermediate with suffi-
cient accuracy, we assume that the barrier to phenolate
dissociation from phosphorus is low. The irreversible elimi-
nation of Ph3Si�OPh by phenolate attack at silicon subse-
quently drives the reaction to completion.

Experimental Section
3 : [RuH(dppe)2(P�C-SiPh3)][OTf] (1; 0.135 g, 0.10 mmol) and LiOH
(0.018 g, 1.0 mmol) were combined in THF (10 mL) under argon for
4 days. The reaction mixture was filtered through diatomaceous earth
and the volatile materials were removed under reduced pressure. The
resulting off-white solid was washed with CH3CN and residual solvent
removed in vacuo. Yield 0.065 g of 3 (53.3%). Selected NMR
spectroscopy data: 1H (300 MHz, [D8]THF): d = 2.91 (d, 2JHP=
9.14 Hz, (O)P=CH, 1H), �10.17 ppm (dq, trans-2JHP= 69.9 Hz, cis-
2JHP= 20.5 Hz, RuH, 1H). 13C{1H} (75.5 MHz, [D8]THF): d =
110.5 ppm (d, 1JCP= 5.3 Hz, (O)P=CH-SiPh3).

31P{1H} (121.5 MHz,
[D8]THF): d = 332.0 (quintet, 2JPP= 28 Hz, (O)P=CHSiPh3),
67.7 ppm (d, 2JPP= 28 Hz, dppe). For further details see the Support-
ing Information.
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