

Suppression of parasitic Si substrate oxidation in Hf O 2 –ultrathin- Al 2 O 3 – Si structures prepared by atomic layer deposition

Myungjin Park, Jaehyoung Koo, Jinwoo Kim, Hyeongtag Jeon, Choelhwyi Bae, and Cristiano Krug

Citation: Applied Physics Letters **86**, 252110 (2005); doi: 10.1063/1.1944206 View online: http://dx.doi.org/10.1063/1.1944206 View Table of Contents: http://scitation.aip.org/content/aip/journal/apl/86/25?ver=pdfcov Published by the AIP Publishing

Articles you may be interested in Effect of impurities on the fixed charge of nanoscale Hf O 2 films grown by atomic layer deposition

Appl. Phys. Lett. **89**, 112903 (2006); 10.1063/1.2348735

Atomic scale characterization of Hf O 2/Al 2 O 3 thin films grown on nitrided and oxidized Si substrates J. Appl. Phys. **96**, 6113 (2004); 10.1063/1.1808245

Fabrication of a metal-oxide-semiconductor-type capacitive microtip array using Si O 2 or Hf O 2 gate insulators Appl. Phys. Lett. **85**, 5412 (2004); 10.1063/1.1828226

Atomic-layer-deposited Al 2 O 3 thin films with thin SiO 2 layers grown by in situ O 3 oxidation J. Appl. Phys. **96**, 2323 (2004); 10.1063/1.1769090

Relationships among equivalent oxide thickness, nanochemistry, and nanostructure in atomic layer chemicalvapor-deposited Hf–O films on Si J. Appl. Phys. **95**, 5042 (2004); 10.1063/1.1689752

Suppression of parasitic Si substrate oxidation in HfO_2 -ultrathin- Al_2O_3 -Si structures prepared by atomic layer deposition

Myungjin Park, Jaehyoung Koo, Jinwoo Kim, and Hyeongtag Jeon^{a)} Division of Materials Science and Engineering, Hanyang University, Seoul 133-791, Korea

Choelhwyi Bae^{b)} and Cristiano Krug

Department of Physics, North Carolina State University, Raleigh, North Carolina 27695

(Received 11 January 2005; accepted 9 May 2005; published online 17 June 2005)

We investigated the effects of Al_2O_3 thickness on the suppression of parasitic substrate oxidation in HfO₂-ultrathin-Al₂O₃-Si structures. The use of H₂O as oxidizing agent in the atomic layer deposition (ALD) chemistry is considered key to preventing the formation of an SiO_x interlayer during oxide deposition. An Al₂O₃ layer prepared with 10 cycles of atomic layer deposition (ALD, ~0.74 nm) effectively suppressed substrate oxidation during rapid thermal annealing in N₂ for 10 s below 800 °C. Parasitic oxidation was observed at 600 °C for samples with only five cycles or without Al₂O₃. Ultrathin Al₂O₃ films can be relevant for the integration of HfO₂ as gate dielectric in silicon technology. © 2005 American Institute of Physics. [DOI: 10.1063/1.1944206]

Excessive tunneling of charge carriers through SiO_rN_v thin films presently limits the miniaturization of metaloxide–silicon field effect transistors. Replacement of SiO_xN_y by a material of higher dielectric constant (k > 9) has been proposed.^{1,2} Other conditions being met, such a high-k material would allow increasing the thickness of the dielectric layer by a factor above k/7.5—therefore, reducing tunneling currents-without significantly altering device characteristics. Among high-k dielectric candidates, HfO₂ is under intense investigation. In addition to high dielectric constant $(k \sim 22-25)$,³ it exhibits relatively large band gap^{4,5} (E_g \sim 5.6 eV) and high free energy of reaction with Si.⁶ Nevertheless, most HfO₂-Si structures reported to date show an interfacial layer, probably formed due to oxidizing species.⁷ The interfacial layer generally forms during HfO₂ deposition and thickens upon thermal annealing, which is inherent to device fabrication. While such a layer can reduce the density of interface defects and improve the reliability of the HfO₂ film,³ a critical disadvantage is the reduced effective dielectric constant of the resulting dielectric stack. This prompts for an engineered interface between HfO₂ and Si.

Al₂O₃ presents a moderate dielectric constant $(k \sim 9)$, wide band gap, and large band offset energies with respect to Si. It has also been shown to remain amorphous on Si after annealing above 800 °C.⁸ Gusev *et al.*⁹ reported the deposition of Al₂O₃ on Si by atomic layer deposition (ALD) without the formation of an interfacial layer. We are thus investigating ultrathin Al₂O₃ layers on Si to prevent interfacial layer formation during HfO₂ deposition and thermal annealing.

In this letter, we report the effects of Al_2O_3 thickness on the suppression of parasitic substrate oxidation in HfO₂-ultrathin-Al₂O₃-Si structures. Ultrathin Al₂O₃ films of different thicknesses (<1 nm) were deposited on HF-last Si(100) by ALD in an F-120 system (ASM Microchemistry). Atomic layer deposition of HfO₂(~4.5 nm) followed on selected samples and directly on Si for control purposes. The hot wall quartz reactor was kept at 300 °C. Trimethylaluminum (TMA, naturally vaporized) and hafnium tetrachloride (HfCl₄, kept at 150 °C and carried by N₂) were the metal precursors, and H₂O was the oxidizing agent. A reactor purge with N₂ preceded substrate exposure to each of the reactants. The samples were submitted to rapid thermal annealing in N₂ for 10 s at 600 to 800 °C. Physical characterization before and after annealing was accomplished using x-ray photoelectron spectroscopy (XPS) and cross-sectional high-resolution transmission electron microscopy (HRTEM).

We used XPS to identify chemical bonding in the samples and to determine the thickness^{10,11} of the Al₂O₃ layers. Figure 1(a) schematically presents three samples used in

FIG. 1. (a) Schematic illustration of three structures used for Al_2O_3 thickness determination by XPS: Clean Si substrate, thick Al_2O_3 film on Si, and thin Al_2O_3 film on Si (sample of interest); (b) Si 2p and (c) Al 2p XPS data from various thicknesses of as-deposited Al_2O_3 on Si ("cy" refers to ALD cycles).

^{a)}Author to whom correspondence should be addressed; electronic mail: hjeon@hanyang.ac.kr

^{b)}Present address: System LSI division, Samsung Electronics Co., Ltd., Yongin Gyeonggido 449-711, Korea.

FIG. 2. Si 2p XPS data for samples featuring (a) zero, (b) 5, and (c) 10 ALD cycles of Al₂O₃ between the Si substrate and the HfO₂ overlayer, with annealing temperature as parameter; Si–Si bonding appears at 99 eV, and Si–O at 103 eV.

the thickness determination process: Clean Si substrate, thick Al_2O_3 layer on Si, and thin Al_2O_3 layer on Si (sample of interest). Figures 1(b) and 1(c) show actual Si 2p and Al 2p XPS spectra acquired from various samples featuring Al₂O₃ layers of different thicknesses. The Si 2p and Al 2p data evidence only Si-Si and Al-O bonding, respectively, indicating that there is no parasitic oxidation of the substrate during Al₂O₃ deposition and that the overlayer is fully oxidized. In the thickness calculations we use 2.9 and 2.8 nm, respectively, as the attenuation lengths for Si 2p and Al 2p photoelectrons in Al₂O₃.¹² These values are reasonably close to those reported¹³ by Bender et al.: 2.65 and 2.70 nm. The Al₂O₃ thicknesses determined are 0.27 and 0.74 nm for 5 and 10 ALD cycles, respectively. A linear fit to the full set of thickness versus number of ALD cycles data (not shown) indicates about three cycles of incubation, i.e., no actual oxide deposition during the first three ALD cycles. Gosset et *al.*¹⁴ also reported a nucleation retardation of four deposition cycles for Al₂O₃ on HF-last Si. The retardation has been understood as due to the low reactivity of hydrogenterminated silicon towards the ALD precursors.

To discuss unintentional interfacial layer formation during HfO₂ deposition and thermal annealing, we consider the Si 2p XPS data in Fig. 2, acquired from the HfO₂–ultrathin-Al₂O₃–Si structures as-prepared and after annealing at 600 to 800 °C. Data from as-deposited samples evidences only Si-Si bonding, indicating the absence of interfacial SiO_x irrespective of Al₂O₃ layer presence or thickness. We attribute that to the use of H_2O as oxidizing agent in the ALD process. The alternative chemistry with O₃ oxidizes the substrate.¹⁵ Si-O bonding becomes evident at 103 eV in Figs. 2(a) and 2(b) after annealing at 600 °C, indicating low thermal stability of the HfO₂-Si structure [Fig. 2(a)] and no beneficial effect of 5 ALD cycles of Al₂O₃ between HfO₂ and Si [Fig. 2(b)]. In contrast, the Si–O XPS component is absent from Fig. 2(c) until the annealing is performed at 800 °C, indicating enhanced thermal stability for the sample incorporating 10 ALD cycles of Al₂O₃.

Figure 3 shows cross-sectional HRTEM images of the HfO_2 -ultrathin- Al_2O_3 -Si structures as-deposited [Figs. 3(a)–3(c)] and after annealing at 700 °C [Figs. 3(d)–3(f)]; the number of Al_2O_3 ALD cycles increases from zero to 5 to 10 in Figs. 3(a)–3(c) and Figs. 3(d)–3(f). Images from as-deposited samples show both HfO_2 and Al_2O_3 films as amorphous; the thickness labels indicate upper limits for the layer between HfO_2 and Si. We recall that the absence of Si-O

FIG. 3. Cross-sectional HRTEM images of HfO_2 -ultrathin- Al_2O_3 -Si structures as-deposited [(a)–(c)] and after thermal annealing in N_2 for 10 s at 700 °C; the number of Al_2O_3 ALD cycles increases from zero to 5 to 10 in the sequences (a)–(c) and (d)–(f). "IL" stands for interfacial layer.

bonding was inferred from XPS for all as-deposited samples. Figures 3(a) shows a transition layer that is only one to two atomic layers-thick, while Figs. 3(b) and 3(c) show a layer of thickness approaching 1 nm. Regarding Fig. 3(b), it is reasonable to question if 5 ALD cycles produce a qualified, continguous layer of Al₂O₃; in this sense, the thickness reported from XPS (0.27 nm) should be interpreted as an approximate average. Based on XPS, the thickness of Al₂O₃ in Fig. 3(c) is more than twice that in Fig. 3(b). We, therefore, state that most of the lighter area between Si and HfO₂ in Fig. 3(b) corresponds to the Si substrate. Concerning the annealed samples, Figs. 3(d) and 3(e) clearly indicates the growth of an interfacial layer, as opposed to Fig. 3(f), in which the interface is stable with reference to the asdeposited sample in Fig. 3(c). HRTEM, therefore, confirms the result provided by XPS, namely that 10 ALD cycles of Al₂O₃ between Si and HfO₂ prevent the formation of an unintentional interfacial layer during thermal annealing at 700 °C. We finally note that the presence of Al_2O_3 does not prevent crystallization of the HfO₂ overlayer, which is evident in Fig. 3 for all annealed samples.

In summary, the suppression of parasitic substrate oxidation in HfO_2 -ultrathin- Al_2O_3 -Si structures was investigated. Ten ALD cycles of Al_2O_3 (0.74 nm) yielded structures presenting thermal stability during rapid thermal annealing in N_2 for 10 s below 800 °C. Samples featuring only 5 ALD cycles of Al_2O_3 did not show improvement with respect to the parent HfO₂–Si stack. This result suggests an approximate minimal Al_2O_3 thickness that could be necessary to integrate HfO₂ as gate dielectric in silicon technology.

This work was supported by the Korean National Program for Tera-level Nanodevices of the Ministry of Science and Technology as one of the 21st Century Frontier Programs.

- ¹G. D. Wilk, R. M. Wallace, and J. M. Anthony, J. Appl. Phys. **89**, 5243 (2001).
- ²S. Thompson, P. Packan, and M. Bohr, Intel Technol. J. **Q3'98**, 1 (1998).
- ³M.-H. Cho, Y. S. Roh, C. N. Whang, K. Jeong, S. W. Nahm, D.-H. Ko, J.
- H. Lee, and K. Fujihara, Appl. Phys. Lett. 81, 3 (2002).
- ⁴J. Robertson, J. Vac. Sci. Technol. B **18**, 1785 (2000).
- ⁵V. V. Afanas'ev, A. Stesmans, F. Chen, X. Shi, and S. A. Campbell, Appl. Phys. Lett. **81**, 1053 (2002).
- ⁶K. J. Hubbard and D. G. Schlom, J. Mater. Res. **11**, 2757 (1996).
- ⁷M. Cho, H. B. Park, J. Park, C. S. Hwang, J. C. Lee, S. J. Oh, J. Jeong, K.

- S. Hyun, H. S. Kang, Y. W. Kim, and J. H. Lee, J. Appl. Phys. 94, 4 (2003).
- ⁸S. Jakschik, U. Schroeder, T. Hecht, M. Gutsche, H. Seidl, and J. W. Bartha, Thin Solid Films **425**, 216 (2003).
- ⁹E. P. Gusev, M. Copel, E. Cartier, I. J. R. Baumvol, C. Krug, and M. A. Gribelyuk, Appl. Phys. Lett. **76**, 176 (2000).
- ¹⁰L. C. Feldman and J. W. Mayer, *Fundamentals of Surface and thin Film Analysis* (North-Holland, New York, 1986).
- ¹¹C. Bae and G. Lucovsky, J. Vac. Sci. Technol. A 22, 2411 (2004).
- ¹²C. J. Powell and A. Jablonski, *NIST Electron Effective-Attenuation-Length Database Version 1.0* (National Institute of Standards and Technology, Gaithersburg, 2001).
- ¹³H. Bender, T. Conard, H. Nohira, J. Petry, O. Richard, C. Zhao, B. Brijs, W. Besling, C. Detavernier, W. Vandervorst, M. Caymax, S. De Gendt, J. Chen, J. Kluth, W. Tsai, and J. W. Maes, in *IWGI 2001* (Business Center for Academic Societies Japan, Tokyo, 2001), p. 86.
- ¹⁴L. G. Gosset, J.-F. Damlencourt, O. Renault, D. Rouchon, Ph. Holliger, A. Ermolieff, I. Trimaille, J.-J. Ganem, F. Martin, and M.-N. Semereia, J. Non-Cryst. Solids **303**, 17 (2002).
- ¹⁵M. Cho, H. B. Park, J. Park, C. S. Hwang, J.-C. Lee, S.-J. Oh, J. Jeong, K. S. Hyun, H.-S. Kang, Y.-W. Kim, and J.-H. Lee, J. Appl. Phys. **94**, 2563 (2003).